Đặt: \(A=\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\)
\(A^3=7-\sqrt{50}+7+\sqrt{50}+3.\left(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\right).\sqrt[3]{\left(7-\sqrt{50}\right)\left(7+\sqrt{50}\right)}\)\(A^3=14-3A\)
\(A^3+3A-14=0\)
\(A^3-2A^2+2A^2-4A+7A-14=0\)
\(A^2\left(A-2\right)+2A\left(A-2\right)+7\left(A-2\right)=0\)
\(\left(A-2\right)\left(A^2+2A+7\right)=0\)
\(\Rightarrow A-2=0\) ( Do: \(A^2+2A+7>0\) )
\(\Rightarrow A=2\)
\(\Rightarrow A\) \(\in N\)
Cách khác nè :3
\(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}=\sqrt[3]{1-3\sqrt{2}+3.2-2\sqrt{2}}+\sqrt[3]{2\sqrt{2}+3.2+3\sqrt{2}+1}=\sqrt[3]{\left(1-\sqrt{2}\right)^3}+\sqrt[3]{\left(\sqrt{2}+1\right)^3}=1-\sqrt{2}+\sqrt{2}+1=2\)Vậy , biểu thức trên là một số tự nhiên .