Giả sử \(M\left(x_0;y_0\right)\) là điểm mà họ \(\Delta_{\alpha}\) không đi qua. Khi đó phương trình sau vô nghiệm với mọi m : \(m^2-2\left(x^3_0+x_0\right)m+y_0+x^2_0-x_0-2=0\)
\(\Leftrightarrow\Delta'=\left(x^3_0+x_0\right)^2-\left(y_0+x^2_0-x_0-2\right)< 0\)
\(\Leftrightarrow y_0>x^6_0+2x^4_0+x_0+2\)
Xét phương trình : \(2mx^3-x^2+\left(2m+1\right)x-m^2+2=x^6+2x^4+x+2\)
\(\Leftrightarrow m^2-2\left(x^3+x\right)m+\left(x^3+x\right)^2=0\)
\(\Leftrightarrow\left(x^3+x-m\right)^2=0\) (*)
Vì phương trình \(x^3+x-m=0\) luôn có nghiệm nên (*) luôn có nghiệm bội.
Vậy \(\left(C_m\right)\) luôn tiếp xúc với đường cong \(y=x^6+2x^4+x+2\)
Khi đó: có nghiệm kép với mọi m
hay có nghiệm kép với mọi m
Cách 2: Gọi là các điểm mà họ đường thẳng trên không đi qua.
Hay vô nghiệm ẩn m
vô nghiệm ẩn m
Xét đường biên:
Lập phương trình hoành độ giao điểm ta được:
Phương trình này luôn có 1 nghiệm kép nên (dm) luôn tiếp xúc (P)