Giải
Giả sử ta có hình chóp S.ABCD, có các cạnh bên SA = SB = SC = SD = ..., kẻ SH ⊥ (ABCD), ta chứng minh được △SHA = △SHB = △SHC = △SHD = △... suy ra HA = HB = HC = HD = ... ⇒⇒ Đáy ABCD...., của hình chóp nội tiếp trong một đường tròn và chân H của đường cao SH là tâm đường tròn ngoại tiếp đa giác đáy. Dễ thấy, mọi điểm nằm trên đường cao SH đều cách đều các đỉnh A, B, C, D của đáy. Trong tam giác SAH chẳng hạn, ta kẻ đường trung trực của cạnh SA, đường này cắt SH ở điểm I. Dễ thấy: IS = IA = IB = IC = ID = ... hay điểm I cách đều các đỉnh của hình chóp và do đó I là tâm mặt cầu đi qua các đỉnh của hình chóp.