Ta có f(x) = (x – 1)2 = 1 và f(x) = (-x2) = 0.
vì f(x) ≠ nên hàm số y = f(x) gián đoạn tại x = 0, do đó hàm số không có đạo hàm tại điểm x = 0.
Ta có = = (2 + ∆x) = 2.
Vậy hàm số y = f(x) có đạo hàm tại x = 2 và f'(2) = 2.
Ta có f(x) = (x – 1)2 = 1 và f(x) = (-x2) = 0.
vì f(x) ≠ nên hàm số y = f(x) gián đoạn tại x = 0, do đó hàm số không có đạo hàm tại điểm x = 0.
Ta có = = (2 + ∆x) = 2.
Vậy hàm số y = f(x) có đạo hàm tại x = 2 và f'(2) = 2.
Chứng minh rằng hàm số :
\(y=signx=\left\{{}\begin{matrix}1,\left(x>0\right)\\0,\left(x=0\right)\\-1,\left(x< 0\right)\end{matrix}\right.\)
không có đạo hàm tại \(x=0\)
Cho hàm số \(f\left(x\right)=\left|x-1\right|+\left|x-2\right|\)
Tìm đạo hàm của \(f\left(x\right)\)
Chứng minh rằng hàm số :
\(y=\left|x-1\right|\) không có đạo hàm tại \(x=1\) nhưng liên tục tại điểm đó ?
Cho hàm số \(f\left(x\right)=\left(x-a\right)\varphi\left(x\right)\) trong đó \(\varphi\left(x\right)\) là hàm số liên tục tại \(x=a\). Tìm \(f'\left(a\right)\)
Cho hàm số \(y=f\left(x\right)=\dfrac{x-2}{x+1}\) có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến cắt 2 đường thẳng d1:x=-1 và d2:y=1 lần lượt tại A, B sao cho bán kính đường tròn nội tiếp tam giác IAB là lớn nhất.
Cho \(f\left(x\right)=\sqrt[3]{x-1}\)
Tính \(f'\left(0\right),f'\left(1\right)\) ?
Cho \(\varphi\left(x\right)=\dfrac{8}{x}\)
Chứng minh rằng :
\(\varphi\left(-2\right)=\varphi\left(2\right)\)
Cho \(f\left(x\right)=x.e^x\).
a. Tính \(f^{\left(3\right)}\left(x\right)\)
b. Từ câu (a) suy ra \(f^{\left(n\right)}\left(x\right)\)
Tìm số gia của hàm số \(f\left(x\right)=x^3\) biết rằng :
a) \(x_0=1;\Delta=1\)
b) \(x_0=1;\Delta x=-0,1\)