Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lương Minh THảo

Chứng minh rằng

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}+1\)

cảm ơn

Akai Haruma
17 tháng 7 2019 lúc 18:54

Lời giải:

Sửa đề: CMR:

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-1\)

-------------------------------

Sử dụng PP liên hợp ta có:

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{1}+\sqrt{2})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{3}+\sqrt{4})(\sqrt{4}-\sqrt{3})}+....+\frac{\sqrt{n}-\sqrt{n-1}}{(\sqrt{n-1}+\sqrt{n})(\sqrt{n}-\sqrt{n-1})}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+....+\frac{\sqrt{n}-\sqrt{n-1}}{n-(n-1)}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n}-\sqrt{n-1}\)

\(=\sqrt{n}-\sqrt{1}=\sqrt{n}-1\)

Ta có đpcm.


Các câu hỏi tương tự
Vân Trần Thị
Xem chi tiết
Trần Văn Tú
Xem chi tiết
Thu Hien Tran
Xem chi tiết
Vân Trần Thị
Xem chi tiết
Đạt Trần Tiến
Xem chi tiết
Anh Thu
Xem chi tiết
Việt Lê
Xem chi tiết
Đạt Trần Tiến
Xem chi tiết
Ánh Dương
Xem chi tiết