\(M=x^2-\sqrt{x^3y}-\sqrt{xy^3}+y^2\)
\(=\sqrt{x^3}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{y^3}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x^3}-\sqrt{y^3}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2\left(x+\sqrt{xy}+y\right)\ge0\) \(\forall x;y\ge0\)