Nghe lời như vầy có phải dễ thương hơn không :3
Gọi công sai của cấp số cộng đó là d và số đầu tiên là u1 thì ta có:
\(\left\{\begin{matrix}u_2=u_1+d\\u_3=u_1+2d\\...\\u_n=u_1+\left(n-1\right)d\end{matrix}\right.\)
Ta có: \(S_n=u_1+u_2+u_3...+u_n\)
\(=u_1+u_1+d+u_1+2d+...+u_1+\left(n-1\right)d\)
\(=n.u_1+d\left(1+2+...+\left(n-1\right)\right)\)
\(=n.u_1+\frac{\left(n-1\right).n.d}{2}\)
\(=\frac{n}{2}\left(2u_1+\left(n-1\right)d\right)\)
\(=\frac{n\left(u_1+u_n\right)}{2}\)