Công sai \(d=\dfrac{u_{2020}-u_1}{2019}=\dfrac{3333}{673}\).
Ta có \(d.S_n=\dfrac{u_2-u_1}{\sqrt{u_1}+\sqrt{u_2}}+\dfrac{u_3-u_2}{\sqrt{u_2}+\sqrt{u_3}}+...+\dfrac{u_{2020}-u_{2019}}{\sqrt{u_{2019}}+\sqrt{u_{2020}}}=\sqrt{u_2}-\sqrt{u_1}+...+\sqrt{u_{2020}}-\sqrt{u_{2019}}=\sqrt{u_{2020}}-\sqrt{u_1}=100-1=99\)
\(\Rightarrow S_n=\dfrac{99}{d}=\dfrac{2019}{101}\).