Chứng minh đẳng thức sau:
a) \(\dfrac{x^2-y^2}{x^2-y^2+xz-yz}=\dfrac{x+y}{x+y+z}\)
b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2+z^2-y^2-2xz}=\dfrac{x+y+z}{x-z-y}\)
c) \(\dfrac{x^3-3x^2-x+3}{x^2-3x}=\dfrac{x^2-1}{x}\)
d) \(\dfrac{4x^3-8x^2+3x-6}{12x^3+4x^2+9x+3}=\dfrac{x-2}{3x+1}\)
m.n jup mk vs mai nộp bài
Tìm đa thức B thỏa mãn đẳng thức:\(\dfrac{x^2-1}{\left(x^2-2x+1\right)}=\dfrac{x+1}{\left(x^2-x-6\right)B}\)
1. Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng :
a) x2y3/5 = 7x3y4/35xy
b) x3 - 4x/10-5x = -x2-2x/5
c)x + 2/ x-1 = (x+2)(x+1)/ x2-1
d) x2 - x - 2/ x+1 = x2 - 3x +2/ x-1
e) x3+8/ x2-2x+4 = x+2
Dùng định nghĩa hai phân thức bằng nhau, hãy tìm đa thức A trong mỗi đẳng thức sau :
a) \(\dfrac{A}{2x-1}=\dfrac{6x^2+3x}{4x^2-1}\)
b) \(\dfrac{4x^2-3x-7}{A}=\dfrac{4x-7}{2x+3}\)
c) \(\dfrac{4x^2-7x+3}{x^2-1}=\dfrac{A}{x^2+2x+1}\)
d) \(\dfrac{x^2-2x}{2x^2-3x-2}=\dfrac{x^2+2x}{A}\)
Bài 3 . Chứng minh các biểu thức sau không phụ thuộc vào biến B = (4-x^2 / x-3 + 2x - 2x^2 / 3 - x + 5 - 4x / x-3 ) . 1/ x-3
1. Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng :
a) x2y3/5 = 7x3y4/35xy
b) x3 - 4x/10-5x = -x2-2x/5
c)x + 2/ x-1 = (x+2)(x+1)/ x2-1
d) x2 - x - 2/ x+1 = x2 - 3x +2/ x-1
e) x3+8/ x2-2x+4 = x+2
1. Phân tích : x2*(x2+9)+25
2. CM đẳng thức: \(\left[\left(x^3-8\right):\frac{x^2+2x+4}{x+2}-\frac{x^2-4}{x^2+2x+4}\cdot\frac{x^3-8}{x+2}\right]:\left(x-1\right)=\frac{4x-8}{x-1}\)
3. CM giá trị của biểu thức sau là hợp số với mọi số tự nhiên k :
\(S=\left(k+2\right)\cdot\left(k^2-2k+4\right)-\left(k+1\right)\left(k+2\right)+\left(k+1\right)\left(k+4\right)+k\)
4. Tìm x biết :
\(\frac{x^2-8x}{x-1}=x\)
dùng định nghĩa hai phân thức đại số chứng minh hai phân thức sau bằng nhau
\(\dfrac{x+2}{x-1}=\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\)
1. x² - 9 + 3x ( x - 3 ) 2. x⁴ + 5x² + 4x + 5 3. x⁴ + x² + 1 minh cam on