1+1=2 vì người ta đã qui định như vậy rồi.
1+1=2 vì là quy ước của phép toán do con người đặt ra
Câu hỏi này có một thời gian tui cũng cố gắng đi tìm câu trả lời ! Rất hấp dẫn.
Để hiểu về vấn đề này, ta phải đi về tận cội nguồn sâu xa của toán học. Có lẽ tôi chỉ nói vắn tắt.
1+1=2. Đó chẳng qua là do sự hiểu biết của con người.
Nếu chúng ta nhìn bình thường thì chỉ thấy, oh, đơn giản 1+1=2, nhưng chúng ta nhìn theo kiểu này, +1 chính là phép biểu hiện số liền sau. Như vậy, 1+1 nghĩa là số liền sau số 1, n+1 nghĩa là số liền sau số n. Một cách nhìn vấn đề rất trực quan.
Nhà toán học đã đưa ra hệ tiên đề Peano gồm 4 tiên đề như sau:
Có một tập hợp N gồm các tính chất sau:
1/ Với mỗi phần tử x trong N có một phần tử, ký hiệu là S(x), trong N được gọi là phần tử kế tiếp của x
2/ Cho x và y trong N sao cho, nếu S(x)=S(y) thì x = y
3/ Có một phần tử trong N ký hiệu là 1 sao cho 1 không là phần tử kế tiếp của một tử nào trong N (nghĩa là không tồn tại x sao cho S(x)=1 )
4/ Cho U là tập con của N sao cho 1 thuộc U và S(x) thuộc U x thuộc U. Lúc đó U = N
Ta lưu ý rằng, các phép cộng, phép nhân trên N cũng chỉ là một ánh xạ từ NxN -> N
Với các định nghĩa trên, ta có thể xác định 2 là S(1), 3 là S(2), 4 là S(3) .........
Ta cũng có thể xác định phép cộng trên N như sau: n+1 = S(n), n+2=S(n+1)
Ta cũng có thể xác định phép nhân trên N như sau: 1.n = n, 2.n = n+n, ....
Và do đó việc 1+1=2 là do từ các tiên đề Peano mà có.
Lưu ý: Từ các tiên đề Peano, định nghĩa phép công, phép nhân, ta có thể CM các tính chất giao hoán, phân phối. Và đặc biệt, quan trọng nhất là: Tập N được định nghĩa như trên là duy nhất theo nghĩa song ánh (Nếp tồn tại tập M thỏa các tiên đề Peano, thì tồn tại song ánh từ N vào M)