Vì x và y là hai đại lượng tỉ lệ thuận
nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow x_1=\dfrac{y_1}{y_2}\cdot x_2=\left(-\dfrac{3}{4}\right):\dfrac{1}{7}\cdot2=\dfrac{-3}{4}\cdot7\cdot2=-\dfrac{3}{4}\cdot14=-\dfrac{42}{4}=-\dfrac{21}{2}\)
b: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-4}=\dfrac{y_1}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-4}=\dfrac{y_1}{3}=\dfrac{y_1-x_1}{3-\left(-4\right)}=\dfrac{2}{7}\)
Do đó: \(x_1=-\dfrac{8}{7};y_1=\dfrac{6}{7}\)
c: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-6}=\dfrac{y_1}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-6}=\dfrac{y_1}{3}=\dfrac{3x_1+2y_1}{3\cdot\left(-6\right)+2\cdot3}=\dfrac{20}{-12}=-\dfrac{5}{3}\)
Do đó: \(x_1=10;y_1=-5\)