\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2xy}\ge\dfrac{4}{1^2}+\dfrac{1}{\dfrac{2.\left(x+y\right)^2}{4}}\ge4+2=6\)
Dấu "=" xảy ra <=> x = y = 0,5
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2xy}\ge\dfrac{4}{1^2}+\dfrac{1}{\dfrac{2.\left(x+y\right)^2}{4}}\ge4+2=6\)
Dấu "=" xảy ra <=> x = y = 0,5
Tìm GTNN của A=\(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}biếtx,y,z>0,\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)
Cho x + y =2 tìm GTNN của A =\(\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
Tìm GTNN của:
\(A=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z >0 và:
a, x+y+z=1
b,x2+y2+z2=1
tim gia tri lon nhat cua bieu thuc \(f\left(x\right)=\dfrac{1}{x^4-x^2+1}\)
Cho \(xy+\sqrt{\left(1+x\right)^2\left(1+y\right)^2}=\sqrt{2017}\)
Tinh gia tri cua bieu thuc: \(P=x+\sqrt{1+y^2}+y\sqrt{1+x^2}\)
Giup mk!!!
Cho x,y,z>0. CM: \(\dfrac{xy}{z^2\left(x+y\right)}+\dfrac{yz}{x^2\left(y+z\right)}+\dfrac{zx}{y^2\left(z+x\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Bài1 Cho a,b,c >0 vaf a+b+c = 1
Chứng minh: \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 3\)
Bài 2: Cho x+y = 2 Tìm GTNN của A = \(\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
cho x,y>0 và xy=1 cùng\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{x+y}\ge3\)
4) Cho x,y > 0 ; x + y = 1 . Tìm min M = \(\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)