\(\overline{z}\) = \(\left(\frac{1+i}{1-i}\right)^{11}+\left(\frac{2i}{1+i}\right)^8\)
tìm modun của số phức \(\overline{z}\)+ iz
mọi người chỉ giùm mình bài này với
a) Cho số phức z. Chứng minh rằng z là một số thực khi và chỉ khi \(z=\overline{z}\)
b) Chứng tỏ rằng số phúc sau là một số thực :
\(z=-\dfrac{3+2i\sqrt{3}}{\sqrt{2}+3i}+\dfrac{-3+2i\sqrt{3}}{\sqrt{2}-3i}\)
Tìm các số phức \(2z+\overline{z}\) và \(\dfrac{25i}{z}\) biết rằng \(z=3-4i\)
Cho \(z=a+bi\). Chứng minh rằng :
a) \(z^2+\left(\overline{z}\right)^2=2\left(a^2-b^2\right)\)
b) \(z^2-\left(\overline{z}\right)^2=4abi\)
c) \(z^2\left(\overline{z}\right)^2=\left(a^2+b^2\right)^2\)
Chứng inh rằng :
a) \(\overline{\left(\dfrac{z_1}{z_2}\right)}=\overline{\dfrac{z_1}{z_2}}\)
b) \(\left|\dfrac{z_1}{z_2}\right|=\dfrac{\left|z_1\right|}{\left|z_2\right|}\)
Gọi Zo là một nghiệm phức của phương trình \(Z^2-2Z+2016^{2017}=0\) . Số phức
\(W=\dfrac{Zo+2016^{2017}}{\overline{Zo}+1}\) có phần thực bằng bao nhiêu...?
A.\(2016^{2017}\) B.1 C.2 C.\(\sqrt{2016^{2017}}\) ..giải giúp mình với , ths trước ha...!
Biết x+y+(2y-1)i=5-3i(x,y,€N), giá trị 3x+4y bằng
Xét số phức z thỏa mãn |z| =\(\sqrt{2}\). Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức w=\(\frac{2+iz}{1+z}\) là đường tròn có bán kính bao nhiêu?
a) Cho hai số phức :
\(z_1=1+2i;z_2=2-3i\)
xác định phần thực và phần ảo của số phức \(z_1-2z_2\)
b) Cho hai số phức :
\(z_1=2+5i;z_2=3-4i\)
xác định phần thực và phần ảo của số phức \(z_1.z_2\)