a/\(2\sqrt{60}-15\sqrt{\frac{3}{5}}+\left(\sqrt{3}-\sqrt{5}\right)\sqrt{3}-\frac{4\sqrt{5}}{\sqrt{3}-\sqrt{7}}\)
cho biểu thức
P=
\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\left(x\ge0;x\ne9\right)\)
a/ rút gọn P
b/ Tìm tất cả các giá trị của x để P<\(-\frac{1}{3}\)
Bài 1. Cho A=\(\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right)\left(1-\frac{3}{\sqrt{a}}\right)\)
a, Rút gọn biểu thức A
b,Xác định a để biểu thức A >\(\frac{1}{2}\)
Bài 2.Cho B=\(\left(\frac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\frac{3}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}-2}\right)\) với x > 0, x \(\ne\)4
a,Rút gọn A
b,Tính A với x=6-\(2\sqrt{5}\)
Bài 1 :
a, \(\sqrt{45}-2\sqrt{\frac{4}{3}}+\frac{\sqrt{18}}{\sqrt{6}}-\sqrt{5\frac{1}{3}}\)
b, (\(\sqrt{7}-\sqrt{3}\) )2 +\(\sqrt{84}\)
Bài 2 : Chứng minh đẳng thức
\(\left(\frac{\sqrt{21}-\sqrt{7}}{\sqrt{3}-1}\frac{\sqrt{15}+\sqrt{3}}{\sqrt{5}+1}\right):\frac{1}{\sqrt{7}+\sqrt{3}}=4\)
Bài 3: Cho biểu thức : A=\(\left(1-\frac{2\sqrt{2a}}{a+2}\right):\left(\frac{1}{\left(\sqrt{a}+2\right)}-\frac{2\sqrt{2a}}{\left(a+2\right)\left(\sqrt{a}+2\right)}\right)\)
a. Rút gọn A
b. Tính A khi a =2009-2\(\sqrt{2008}\)
Bài 4 : Cho A =\(\left(1-\frac{4}{\sqrt{x}+1}+\frac{1}{x-1}\right):\frac{x-2\sqrt{x}}{x-1}\) điều kiện x>0 , x≠1,x≠4
a.Rút gọn
b. Tìm x để A =\(\frac{1}{2}\)
1, A= \(\frac{\sqrt{x}+4}{\sqrt{x}-1}\) B= \(\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\left(x\ge0,x\ne1\right)\)
Tìm x để \(\frac{A}{B}\ge\frac{x}{4}+5\)biết B= \(\frac{1}{\sqrt{x}-1}\)
2, A= \(\frac{4\left(\sqrt{x}+1\right)}{25-x}\) B= \(\left(\frac{15-5x}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0,x\ne25\right)\)
Tìm giá trị nguyên của x để P= A.B đặt giá trị nguyên lớn nhất
GIÚP MK VỚI! THANKS
Rút gọn các biểu thức sau:
\(D=\left(\frac{5\sqrt{x-6}}{x-9}-\frac{2}{\sqrt{x}+3}\right):\left(1+\frac{6}{x-9}\right)\)
\(E=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)
-cho x,y thỏa mãn ( x\(+\sqrt{x^2+2015}\left(y+\sqrt{y^2+2015}\right)=2015\) tính tổng S=x+y
B1 Cho biểu thức A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{\sqrt{x}+7}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
1, Rút gọn A. Tìm x sao cho A<2
2, Cho 1≤a,b,c≤2. Chứng minh rằng \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
cho x = \(\dfrac{\sqrt[3]{10+6\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)
tính p=(x3-4x+1)2015
Giải hộ mình với
1 chứng minh đẳng thức:
a) \(\frac{\sqrt{a^2+x^2}+\sqrt{a^2+x^2}}{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}-\sqrt{\frac{a^4}{x^4}}=\frac{a^2}{x^2}\)với \(\left|a\right|\)>\(\left|x\right|\)
b) \(\left(\frac{5+2\sqrt{6}}{\sqrt{x}+\sqrt{2}}\right)^2-\left(\frac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{6}}\right)^2=4\sqrt{6}\)
2.
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
a) Rút gọn A nếu \(x\ge0\)và \(x\ne4\)
b) Tìm x để A-2