Câu 11: cho tứ giác ABCD. các đường thẳng AB và CD cắt nhau tại M, các đường thẳng AD và BC cắt nhau tại N. Gọi I,J,K theo thứ tự là trung điểm của BD,AC,MN. CMR I,J,K thẳng hàng.
Cho tứ giác ABCD có AD=BC và AB<CD. Trung điểm của cạnh AB và CD lần lượt là
M và N. Trung điểm của các đường chéo BD và AC lần lượt là P và Q.
a) Chứng minh tứ giác MPNQ là hình thoi
b) Kéo dài hai cạnh DA và CB cắt nhau tại G, kẻ tia phân giác Gx của góc AGB. Chứng
minh Gx//MN.
cho hình thang abcd (ab//cd) ab=1/2cd gọi m n lần lượt là trung điểm của ad bc đoạn thẳng mn cắt bd tại p cắt ac taiq cmr mp=pq=qn
Cho hình chữ nhật ABCD , AC cắt BD tại O . Lấy M là một điểm thuộc cạnh CD , MO cắt AB tại N
a) Chứng minh : tứ giác BNDM là hình bình hành
b) Từ điểm M , N kẻ đường thẳng song song với AC , lần lượt cắt AD và BC tại E , F . Chứng minh : MENF là hình bình hành
c) Chứng minh : 3 đường thẳng AC , MN , EF đồng quy
d) Cho BD cắt NF tại I . Chứng minh : I là trung điểm của NF
hình thang ABCD có hai đáy CD=10,AB=4 một đường thẳng đi qua trung điểm E và F lần lượt của AD vàBC cắt BD và AC lần lượt tại M và N. tính độ dài MN. Cảm ơn nhiều
1)Cho hình thang ABCD (AB là đáy bé).Một đường thẳng song song với AB cắt AD,BD,AC,BC lần lượt tại M,N,P,Q.
CMR: MN=PQ
2)Cho hình thang ABCD (AB//CD) . M là trung điểm của CD . MA cắt BD tại I ; MB cắt AC tại K .
CMR:IK//AB
Cho tứ giác ABCD, AB=CD (AB không song song với CD). Gọi M là trung điểm của BC, N là trung điểm của AD. Đường thẳng MN cắt AB và CD theo thứ tự tại E và F. Chứng minh: \(\widehat{AEN}=\widehat{NFD}\)
Cho tứ giác ABCD, AB=CD (AB không song song với CD). Gọi M là trung điểm của BC, N là trung điểm của AD. Đường thẳng MN cắt AB và CD theo thứ tự tại E và F. Chứng minh: \(\widehat{AEN}=\widehat{NFD}\)
Cho tứ giác ABCD, AB=CD (AB không song song với CD). Gọi M là trung điểm của BC, N là trung điểm của AD. Đường thẳng MN cắt AB và CD theo thứ tự tại E và F. Chứng minh: \(\widehat{AEN}=\widehat{NFD}\)