Cho hình chóp S.ABC có SA vuông góc (ABC) . Cho tam giác ABC vuông B có AB=2a ,BC=a Biết cạnh SB tạo với đáy một góc 60
a) Xác định tâm và bán kính mặt cầu ngoại tiếp S.ABC
b) Tính S mặt cầu và Vkhối cầu
cho hình chóp đều SABC, đáy ABC có cạnh bằng a góc giữa cạnh bên và mặt đáy bằng 60 độ
a, xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp SABC
b, Tính thể tính khối nón ngoại tiếp hình chóp SABC
c, Tính diện tích toàn phần hình trụ có diện tích là tâm đáy trên và tám giác abC là tam giác ngoại tiếp đáy dưới
Hình tứ diện đều ABCD có cạnh bằng a và có đường cao AH. Gọi O là trung điểm của AH. Xác định tâm và bán kính của mặt cầu ngoại tiếp tứ diện OBCD ?
Hình chóp S.ABCD có SA = a là chiều cao của hình chóp và đáy ABCD là hình thang vuông tại A và B có AB = BC = a và AD = 2a. Gọi E là trung điểm của cạnh AD. Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.CDE ?
Hình tứ diện ABCD có các mặt ABC và BCD là tam giác đều cạnh a, góc giữa đường thẳng AD và mp(ABC) bằng 45 độ. Tính bán kính mặt cầu ngoại tiếp tứ diện.
Hình chóp tam giác S.ABC có SA = SB = SB = a và có chiều cao bằng h. Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp. Tính diện tích của mặt cầu đó ?
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Hãy xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp đó ?
cho hình chóp SABCD, SB vuông góc với đáy, SA=a, AB=b, AC=c, góc BAC = góc BDC=90 độ . Tính bán kính mặt cầu ngoại tiếp hình chóp.
Cho mặt cầu tâm O, bán kính r. Gọi \(\left(\alpha\right)\) là mặt phẳng cách tâm O một khoảng h \(\left(0< h< r\right)\) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu tại một điểm B. Gọi CD là một đường kính di động của (C)
a) Chứng minh các tổng \(AD^2+BC^2\) và \(AC^2+BD^2\) có giá trị không đổi
b) Với vị trí nào của CD thì diện tích tam giác BCD lớn nhất
c) Tìm tập hợp các điểm H, hình chiếu vuông góc của B trên CD khi CD chuyển động trên đường tròn (C)