Cho hình chóp tam giác đều S.ABC đỉnh S, có độ dài cạnh đáy bằng a. Gọi M và N lần lượt là trung điểm của các cạnh SB và SC. Biết mặt phẳng ( AMN ) vuông góc với mặt phẳng ( SBC ). Tính diện tích tam giác AMN theo a.
Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B , SA vuông góc với ABC ,SA = a√3 . Xác định và tính góc giữa hai mặt phẳng SBC và ABC
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều. Gọi M, N, P lần lượt là trung điểm của BB', A'C', AA' và H là hình chiếu của C lên AB. Hỏi mặt phẳng (MNP) vuông góc với mặt phẳng nào sau đây?? A. (AMP) B. (BCB') C. (C'CH) D. (BMH)
Cho hình chóp S.ABC, đáy là tam giác vuông tại C. Tam giác SAC là tam giác đều cạnh a nằm trong mặt phẳng vuông góc với đáy, cạnh AB bằng a căn 3. Gọi H là trung điểm AC. Chứng minh: a. (SBC) vuông góc (SAC) b. Tính góc giữa (SAB) và (ABC)
Tứ diện S.ABC có SA vuông góc với mặt phửng (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC. Chứng minh rằng :
a) AH, SK và BC đồng quy
b) SC vuông góc với mặt phẳng (BHK) và \(\left(SAC\right)\perp\left(BHK\right)\)
c) HK vuông góc với mặt phẳng (SBC) và \(\left(SBC\right)\perp\left(BHK\right)\)
Trong mặt phẳng \(\left(\alpha\right)\) cho tam giác ABC vuông ở B. Một đoạn thẳng AD vuông góc với \(\left(\alpha\right)\) tại A. Chứng minh rằng :
a) \(\widehat{ABD}\) là góc giữa hai mặt phẳng (ABC) và (DBC)
b) Mặt phẳng (ABD) vuông góc với mặt phẳng (BDC)
c) HK// BC với H và K lần lượt là giao điểm của DB và DC với mặt phẳng (P) đi qua A và vuông gcs với DB
Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB=a, BC=2a, AA'=3a. Một mp (P) đi qua A và vuông góc với A'C lần lượt cắt các đoạn CC', BB' tại M,N.
a, VC.A'AB
b, Chứng minh: \(AN\perp A'B\)
c, VA'AMN
Cho hình chóp tứ giác đều S.ABCD , cạnh đáy bằng a , cạnh bên bằng \(\dfrac{a\sqrt{5}}{2}\). H là giao điểm AC và BD.
a) chứng minh: \(\left(SAC\right)\perp\left(SBD\right)\)
b) tính khoảng cách giữa 2 đường thẳng AC và SB