Trong tam giác ABI, ta có :
\(\dfrac{MB'}{AB}=\dfrac{MI}{BI}\left(1\right)\)
Trong tam giác ABI, ta có :
\(\dfrac{MB'}{AB}=\dfrac{MI}{BI}\left(1\right)\)
Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B', C', D'.
Tìm giá trị lớn nhất của biểu thức :
\(\dfrac{MB'}{AB}.\dfrac{MC'}{AC}.\dfrac{MD'}{AD}\)
Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B', C', D'
Xác định các giao điểm B', C', D' ?
Cho tứ diện ABCD và điểm M nằm trong tam giác BCD
a) Dựng đường thẳng qua M song song với hai mặt phẳng (ABC) và (ABD). Giả sử đường thẳng này cắt mặt phẳng (ACD) tại B'
Chứng minh rằng AB', BM và CD đồng quy tại một điểm
b) Chứng minh :
\(\dfrac{MB'}{BC}=\dfrac{dt\left(\Delta MCD\right)}{dt\left(\Delta BCD\right)}\)
c) Đường thẳng song song với hai mặt phẳng (ACB) và (ACD) kẻ từ M cắt (ABD) tại C' và đường thẳng song song với hai mặt phẳng (ADC) và (ADB) kẻ từ M cắt (ABC) tại D'.
Chứng minh rằng :
\(\dfrac{MB'}{BA}+\dfrac{MC'}{CA}+\dfrac{MD'}{DA}=1\)
Cho hình hộp ABCD. A'B'C'D'. Hai điểm M và N lần lượt nằm trên hai cạnh AD và CC' sao cho \(\dfrac{AM}{MD}=\dfrac{CN}{NC'}\)
a) Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACB')
b) Xác định thiết diện của hình hộp cắt bởi mặt phẳng đi qua MN và song song với mặt phẳng (ACB')
Cho tứ diện ABCD. Lấy điểm M thuộc đoạn AB. Gọi N, P là các điểm thuộc miền trong các tam giác ACD, BCD tương ứng. Xác định thiết diện tạo bởi mặt phẳng (MNP) cắt tứ diện ABCD ?
Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' sao cho đường thẳng B'C' cắt đường thẳng BC tại K, đường thẳng C'D' cắt đường thẳng CD tại J, đường thẳng D'B' cắt đường thẳng DB tại I
a) Chứng minh ba điểm I, J, K thẳng hàng
b) Lấy điểm M ở giữa đoạn thẳng BD; điểm N ở giữa đoạn thẳng CD sao cho đường thẳng MN cắt đường thẳng BC và điểm F nằm bên trong tam giác ABC. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MNF)
Trong mặt phẳng \(\left(\alpha\right)\) cho tam giác ABC. Từ ba đỉnh của tam giác này ta kẻ các nửa đường thẳng song song cùng chiều Ax, By, Cz không nằm trong \(\left(\alpha\right)\). Trên Ax lấy đoạn AA'=a, trên By lấy BB'=b, trên Cz lấy đoạn CC'=a
a) Gọi I, J và K lần lượt là các giao điểm B'C'. C'A' và A'B' với \(\left(\alpha\right)\).
Chứng minh rằng \(\dfrac{IB}{IC}.\dfrac{JC}{JA}.\dfrac{KA}{KB}=1\)
b) Gọi G và G' lần lượt là trọng tâm của các tam giác ABC và A'B'C'
Chứng minh GG' // AA'
c) Tính GG' theo a, b, c ?
Cho tứ diện ABCD; M là trung điểm của canh AC. N là điểm thuộc cạnh AD sao cho AN = 2ND.
O là điểm thuộc miền trong của ∆BCD. Mệnh đề nào sau đây đúng ?
A. (OMN đi qua giao điểm của hai đt MN và CD B. (OMN) chứa đt CD
C. (OMN) chứa đt AB D. (OMN) đia qua điểm A
giải thích
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB song song CD). Gọi G là trọng tâm của tam giác SCD. a) Tìm giao tuyến của hai mặt phẳng SCD và mặt phẳng GAB. b) Gọi M là điểm thuộc cạnh AC, sao cho AM = 2 MC. Chứng minh rằng MG song song (SAB) Giúp em bài này là cứu vớt con điểm Toán cuối kì đấy ạaaaaa :(((