Cho tứ diện ABCD và điểm M nằm trong tam giác BCD
a) Dựng đường thẳng qua M song song với hai mặt phẳng (ABC) và (ABD). Giả sử đường thẳng này cắt mặt phẳng (ACD) tại B'
Chứng minh rằng AB', BM và CD đồng quy tại một điểm
b) Chứng minh :
\(\dfrac{MB'}{BC}=\dfrac{dt\left(\Delta MCD\right)}{dt\left(\Delta BCD\right)}\)
c) Đường thẳng song song với hai mặt phẳng (ACB) và (ACD) kẻ từ M cắt (ABD) tại C' và đường thẳng song song với hai mặt phẳng (ADC) và (ADB) kẻ từ M cắt (ABC) tại D'.
Chứng minh rằng :
\(\dfrac{MB'}{BA}+\dfrac{MC'}{CA}+\dfrac{MD'}{DA}=1\)
Cho hình hộp ABCD.A'B'C'D'. Gọi M và N lần lượt là trung điểm của hai cạnh bên AA' và CC'. Một điểm P nằm trên cạnh bên DD'.
a) Xác định giao điểm Q của đường thẳng BB' với mặt phẳng (MNP)
b) Mặt phẳng (MNP) cắt hình hộp theo một thiết diện. Thiết diện đó có tính chất gì ?
c) Tìm giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp
Hình chóp SABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của cạnh SC, SD. Chứng minh MN//(SAB). Gọi mặt phẳng alpha là mặt phẳng chứa AM và song song với BD, mặt phẳng alpha cắt SB tại E. S1, S2 là kí hiệu cho diện tích của các tam giác SME và SBC. Tính tỉ số S1/S2
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và cho M là một điểm thay đổi trên cạnh SC. Một mặt phẳng (P) thay đổi qua AM và song song với BD. Mặt phẳng (P) cắt SB, SD lần lượt tại E và FF. Hãy xác định các điểm E, F ?
Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi C' là trung điểm của SC và M là một điểm di động trên cạnh SAa. Mặt phẳng (P) di động luôn đi qua C'M và song song với BC
a) Xác định thiết diện (P) cắt hình chóp S.ABCD. Xác định vị trí điểm M để thiết diện là hình bình hành
b) Khi M di động trên cạnh SA, thì giao điểm của hai cạnh đối của thiết diện chạy trên đường nào ?
1.Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M,N,P lần lượt là trung điểm các cạnh AB,CD,SA. Q là 1 điểm thuộc đoạn SP.
a, Xác định thiết diện của hình chóp cắt bởi ( ∝) đi qua Q và song song với (SBN)
b, Xác định thiết diện của hình chóp cắt bởi ( Ф) đi qua MN song song với (SAD)
2. Cho lăng trụ ABC.A'B'C'. Gọi M,N,P là trung trọng tâm các tam giác AA'B, CA'C', CBC'
a, Xác định giao tuyến 2 mặt phẳng (ABC) và (BA'C')
b, Chứng minh MN // (BA'C'), (MNP) // (BA'C')
c, Xác định thiết diện của lăng trụ khi cắt bởi mặt phẳng (MNP) Tính diện tích thiết diện biết tam giác BA'C' là tam giác đều cạnh a
3, Cho hình hộp ABCD.A'B'C'D' có tất cả các mặt là hình vuông cạnh a. Trên các cạnh AB,CC',C'D' và AA' lấy các điểm M,N,P,Q sao cho AM = C'N = C'P = AQ = x ( 0 <= x <= a)
a, Chứng minh M,N,P,Q đồng phẳng và Mp,Nq cắt nhau tại 1 điểm cố định
b, Chứng minh MNPQ đi qua 1 đường thẳng cố định
c, Dựng thiết diện của hình hộp khi cắt bởi (MNPQ). Tìm GTLN và GTNN của chu vi thiết diện
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB song song CD). Gọi G là trọng tâm của tam giác SCD. a) Tìm giao tuyến của hai mặt phẳng SCD và mặt phẳng GAB. b) Gọi M là điểm thuộc cạnh AC, sao cho AM = 2 MC. Chứng minh rằng MG song song (SAB) Giúp em bài này là cứu vớt con điểm Toán cuối kì đấy ạaaaaa :(((
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và cho M là một điểm thay đổi trên cạnh SC. Một mặt phẳng (P) thay đổi qua AM và song song với BD
Chứng minh rằng (P) luôn chứa một đường thẳng cố định khi M thay đổi ?
Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ 4 nửa đường thẳng \(Ax,By,Cz,Dt\) ở cùng phía đối với mặt phẳng (ABCD), song song với nhau và không nằm trong mặt phẳng (ABCD). Một mặt phẳng \(\left(\beta\right)\) lần lượt cắt \(Ax,By,Cz,Dt\) tại A', B', C', D'
a) Chứng minh mặt phẳng (\(Ax,By\)) song song với mặt phẳng (\(Cz,Dt\)) ?
b) Gọi \(I=AC\cap BD;J=A'C'\cap B'D'\). Chứng minh IJ song song với AA' ?
c) Cho \(AA'=a;BB'=b;CC'=c\). Hãy tính \(DD'\) ?