a) Gọi \(N=DK\cap AC;M=DJ\cap BC\).
Ta có \(\left(DJK\right)\cap\left(ABC\right)=MN\Rightarrow MN\subset\left(ABC\right)\)
Vì \(L=\left(ABC\right)\cap JK\) nên dễ thấy \(L=JK\cap MN\)
a) Gọi \(N=DK\cap AC;M=DJ\cap BC\).
Ta có \(\left(DJK\right)\cap\left(ABC\right)=MN\Rightarrow MN\subset\left(ABC\right)\)
Vì \(L=\left(ABC\right)\cap JK\) nên dễ thấy \(L=JK\cap MN\)
Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J tương ứng là hai điểm trên cạnh BC và BD sao cho IJ không song song với CD
a) Hãy xác định giao tuyến của hai mặt phẳng (IJM) và (ACD)
b) Lấy N là điểm thuộc miền trong của tam giác ABD sao cho JN cắt đoạn AB tại L. Tìm giao tuyến của hai mặt phẳng (MNJ) và (ABC)
cho tứ diện ABCD, điểm I thuộc cạnh AB, J là điểm trong tam giác BCD, K là điểm trong tam giác ACD
a) Tìm giao điểm của IK và (BCD)
b) Tìm giao tuyến của (IJK) và (ABC)
c) Tìm giao tuyến của (IJK) và các mặt phẳng còn lại của tứ diện
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD, trên cạnh AD lấy điểm P không trùng với trung điểm của AD.
a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)
b) Tìm giao điểm của mặt phẳng (PMN) và BC
cho tứ diện đều ABCD cạnh a . Gọi I , J lần lượt là trung điểm của AB và CD .
gọi G là trọng tâm tam giác ACD, M là trung điểm BC . tính các tỉ số mà mặt phẳng (IGM) chia các cạnh CD , AD . xác định thiết diện của tứ giác ABCD với mặt phẳng (IGM) . thiết diện là hình gì ? tính diện tích thiết diện đó .
cho tứ diện đều ABCD cạnh a . Gọi I , J lần lượt là trung điểm của AB và CD .
gọi G là trọng tâm tam giác ACD, M là trung điểm BC . tính các tỉ số mà mặt phẳng (IGM) chia các cạnh CD , AD . xác định thiết diện của tứ giác ABCD với mặt phẳng (IGM) . thiết diện là hình gì ? tính diện tích thiết diện đó .
cho tứ diện đều ABCD cạnh a . Gọi I , J lần lượt là trung điểm của AB và CD .
gọi G là trọng tâm tam giác ACD, M là trung điểm BC . tính các tỉ số mà mặt phẳng (IGM) chia các cạnh CD , AD . xác định thiết diện của tứ giác ABCD với mặt phẳng (IGM) . thiết diện là hình gì ? tính diện tích thiết diện đó
cho tứ diện đều ABCD cạnh a . Gọi I , J lần lượt là trung điểm của AB và CD .
gọi G là trọng tâm tam giác ACD, M là trung điểm BC . tính các tỉ số mà mặt phẳng (IGM) chia các cạnh CD , AD . xác định thiết diện của tứ giác ABCD với mặt phẳng (IGM) . thiết diện là hình gì ? tính diện tích thiết diện đó .
cho tứ diện đều ABCD cạnh a . Gọi I , J lần lượt là trung điểm của AB và CD .
gọi G là trọng tâm tam giác ACD, M là trung điểm BC . tính các tỉ số mà mặt phẳng (IGM) chia các cạnh CD , AD . xác định thiết diện của tứ giác ABCD với mặt phẳng (IGM) . thiết diện là hình gì ? tính diện tích thiết diện đó .
cho tứ diện đều ABCD cạnh a . Gọi I , J lần lượt là trung điểm của AB và CD .
gọi G là trọng tâm tam giác ACD, M là trung điểm BC . tính các tỉ số mà mặt phẳng (IGM) chia các cạnh CD , AD . xác định thiết diện của tứ giác ABCD với mặt phẳng (IGM) . thiết diện là hình gì ? tính diện tích thiết diện đó .