Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B', C', D'.
Tìm giá trị lớn nhất của biểu thức :
\(\dfrac{MB'}{AB}.\dfrac{MC'}{AC}.\dfrac{MD'}{AD}\)
Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B', C', D'
Chứng minh :
\(\dfrac{MB'}{AB}+\dfrac{MC'}{AC}+\dfrac{MD'}{AD}=1\)
cho tứ diện abcd m,n nằm trong tam giá abd,acd, thiết diện tứ giác abcd với mặt phẳng (dmn) là hình gì
Cho tứ diện ABCD và điểm M nằm trong tam giác BCD
a) Dựng đường thẳng qua M song song với hai mặt phẳng (ABC) và (ABD). Giả sử đường thẳng này cắt mặt phẳng (ACD) tại B'
Chứng minh rằng AB', BM và CD đồng quy tại một điểm
b) Chứng minh :
\(\dfrac{MB'}{BC}=\dfrac{dt\left(\Delta MCD\right)}{dt\left(\Delta BCD\right)}\)
c) Đường thẳng song song với hai mặt phẳng (ACB) và (ACD) kẻ từ M cắt (ABD) tại C' và đường thẳng song song với hai mặt phẳng (ADC) và (ADB) kẻ từ M cắt (ABC) tại D'.
Chứng minh rằng :
\(\dfrac{MB'}{BA}+\dfrac{MC'}{CA}+\dfrac{MD'}{DA}=1\)
Cho tứ diện ABCD. Lấy điểm M thuộc đoạn AB. Gọi N, P là các điểm thuộc miền trong các tam giác ACD, BCD tương ứng. Xác định thiết diện tạo bởi mặt phẳng (MNP) cắt tứ diện ABCD ?
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB song song CD). Gọi G là trọng tâm của tam giác SCD. a) Tìm giao tuyến của hai mặt phẳng SCD và mặt phẳng GAB. b) Gọi M là điểm thuộc cạnh AC, sao cho AM = 2 MC. Chứng minh rằng MG song song (SAB) Giúp em bài này là cứu vớt con điểm Toán cuối kì đấy ạaaaaa :(((
Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' sao cho đường thẳng B'C' cắt đường thẳng BC tại K, đường thẳng C'D' cắt đường thẳng CD tại J, đường thẳng D'B' cắt đường thẳng DB tại I
a) Chứng minh ba điểm I, J, K thẳng hàng
b) Lấy điểm M ở giữa đoạn thẳng BD; điểm N ở giữa đoạn thẳng CD sao cho đường thẳng MN cắt đường thẳng BC và điểm F nằm bên trong tam giác ABC. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MNF)
Cho hình chóp tứ giác S.ABCD \(\)có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SC. Gọi I là giao điểm của đường thẳng AM với mặt phẳng (SBD). Khi đó tỉ số \(\dfrac{MA}{IA}\) bằng bao nhiêu?
A. \(\dfrac{4}{3}\)
B. 3
C. 2
D. \(\dfrac{3}{2}\)
Cho tứ diện ABCD; M là trung điểm của canh AC. N là điểm thuộc cạnh AD sao cho AN = 2ND.
O là điểm thuộc miền trong của ∆BCD. Mệnh đề nào sau đây đúng ?
A. (OMN đi qua giao điểm của hai đt MN và CD B. (OMN) chứa đt CD
C. (OMN) chứa đt AB D. (OMN) đia qua điểm A
giải thích