GIÚP EM VỚI,EM ĐANG CẦN GẤP Cho tứ diện ABCD gọi I,J là các điểm lần lượt nằm trên AB,AD với AI=1/2,AJ=3/2JD.Tìm giao tuyến của:
a)(ACD)∩(CIJ)
b)(CIJ)∩(BCD)
Trên mặt phẳng \(\left(\alpha\right)\) cho hình vuông ABCD. Các tia Ax, By, Cz, Dt vuông góc với mặt phẳng \(\left(\alpha\right)\) và nằm về một phía đối với mặt phẳng \(\left(\alpha\right)\) . Một mặt phẳng \(\left(\beta\right)\) lần lượt cắt \(Ax,By,Cz,Dt\) tại A', B', C', D'.
a) Tứ giác A'B'C'D' là hình gì ? Chứng minh rằng AA' + CC'=BB'+DD'
b) Chứng minh rằng điều kiện để tứ giác A'B'C'D' là hình thoi là nó có hai đỉnh đối diện cách đều mặt phẳng \(\left(\alpha\right)\)
c) Chứng minh rằng điều kiện để tứ giác A'B'C'D' là hình chữ nhật là nó có hai đỉnh kề nhau cách đều mặt phẳng \(\left(\alpha\right)\)
Câu 5: Cho hình chóp tứ giác đều S.ABCD, có đáy ABCD là hình vuông tâm O cạnh bằng a, góc giữa cạnh bên và mặt đáy 1 góc 60°. Gọi IE lần lượt là là trung điểm của cạnh BC,CD a)Chứng minh: AC vuông góc (SBD) ; BD vuông góc SA b)Chứng minh: (SBC) vuông góc (SOI) c)Tính góc giữa mặt bên và mặt đáy. d)góc giữa OE và mặt (SCD) e)Tính khoảng cách giữa SI và AB.
Cho tam giác đều ABC,G là trọng tâm
\(a,\left(\overrightarrow{AB},\overrightarrow{CB}\right)\)
\(b,\left(\overrightarrow{AB,}\overrightarrow{BC}\right)\)
\(c,\left(\overrightarrow{AG},\overrightarrow{GC}\right)\)
Cho tam giác đều ABC có cạnh bằng a. Đường thẳng d vuông góc với mp (ABC) tại A và \(M\in\left(d\right)\). Gọi H, O lần lượt là trực tâm của tam giác ABC và tam giác MBC. Gọi N là giao điểm của HO và d. Chứng minh tứ diện BCMN có các cặp cạnh đối vuông góc với nhau từng đôi một ?
Câu 1 : Cho hình lập phương ABCDEFGH ,góc giữa hai véc tơ \(\overrightarrow{AC},\overrightarrow{BG}\) là :
A. 450
B. 300
C. 600
D. 1200
Câu 2 : Cho tứ diện ABCD có AB = CD = a , IJ = \(\frac{a\sqrt{3}}{2}\) ( I , J lần lượt là trung điểm của BC và AD ) . Số đo giữa hai đường thẳng AB và CD là :
A. 300
B. 450
C. 600
D. 900
Câu 3 : Cho hình chóp S.ABCD có SA vuông góc với (ABCD) , đáy ABCD là hình chữ nhật . Biết SA = a\(\sqrt{3}\) , AB = a , AD = \(a\sqrt{3}\) . Số đo giữa cạnh bên SB và cạnh AB là :
A. 600
B. 450
C. 900
D. 300
Câu 4 : Cho tứ diện ABCD đều cạnh bằng a . Gọi M là trung điểm CD , \(\alpha\) là góc giữa AC và BM . Chọn khẳng định đúng ?
A. \(cos\alpha=\frac{\sqrt{3}}{4}\)
B. \(cos\alpha=\frac{1}{\sqrt{3}}\)
C. \(cos\alpha=\frac{\sqrt{3}}{6}\)
D. \(\alpha=60^0\)
Câu 5: Cho tứ diện ABCD với \(AB\perp AC\) , \(AB\perp BD\) . Gọi P , Q lần lượt là trung điểm của AB và CD . Góc giữa PQ và AB là :
A. 900
B. 600
C. 300
D. 450
Câu 6 : Cho hình thoi ABCD có tâm O , AC = 2a . Lấy điểm S không thuộc (ABCD) sao cho \(SO\perp\left(ABCD\right)\) . Biết tan \(\widehat{SOB}\) = \(\frac{1}{2}\) . Tính số đo của góc giữa SC và (ABCD)
A. 750
B. 450
C. 300
D. 600
Câu 7 : Cho hình chóp S.ABC có \(SA\perp\left(ABC\right)\) và tam giác ABC không vuông . Gọi H , K lần lượt là trực tâm \(\Delta ABC\) và \(\Delta SBC\) . Số đo góc tạo bởi SC và mp (BHK) là :
A. 450
B. 1200
C. 900
D. 650
Câu 8 : Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a , \(SA\perp\left(ABC\right)\) , \(SA=a\frac{\sqrt{3}}{2}\) . Gọi (P) là mặt phẳng đi qua A và vuông góc với trung tuyến SM của tam giác SBC . Thiết diện của (P) và hình chóp S.ABC có diện tích bằng ?
A. \(\frac{a^2\sqrt{6}}{8}\)
B. \(\frac{a^2}{6}\)
C. \(a^2\)
D. \(\frac{a^2\sqrt{16}}{16}\)
Câu 9 : Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a . Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm H của cạnh BC . Biết tam giác SBC là tam giác đều . Tính số đo của góc giữa SA và (ABC)
A. 600
B. 750
C. 450
D. 300
HELP ME !!!! giải chi tiết giùm mình với ạ
Cho tứ diện ABCD có tam giác BCD là tam giác đều , gọi BH là đường cao của tam giác BCD . O là trung điểm của BH và AO vuông góc (BCD), AO=BH=2a, trên OH lấy điểm I sao cho BI=x, (a<x<2a), mặt phẳng (P) đi qua I và vuông góc OH. Dựng thiết và tính diện tích thiết diện của tứ diện tạo bởi (P)
Tứ diện ABCD có hai mặt ABC và ADC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác ABC vuông tại A có AB = a, AC = b. Tam giác ADC vuông tại D có CD = a
a) Chứng minh các tam giác BAD và BDC là những tam giác vuông
b) Gọi I và K lần lượt là trung điểm của AD và BC. Chứng minh IK là đường vuông góc chung của hai đường thẳng AD và BC