Ôn tập cuối năm phần hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Nhất Khánh

Cho tam giác vuông tại A, có đường cao AH. Biết AB=6 cm và AC=8 cm

a Chứng minh tam giác HBA~ABC

b Tính độ dài BC và AH

c Chứng minh AB.AB=BC.BH

d Phân giác của góc ACB cắt AH tại E, cắt AB tại S. Tính tỉ số diện tích của hai tam giác ACD và HCE

A B C H D E 1

a) Vì AH \(\perp\) BC (gt)

=> \(\Delta\)HBA vuông tại H (ĐN \(\Delta\) vuông)

Xét \(\Delta\)HBA vuông tại H và \(\Delta\)ABC vuông tại A có: \(\widehat{B}\) chung

=> \(\Delta\)HBA ~ \(\Delta\)ABC (TH ~ \(\Delta\) vuông)

b) Vì \(\Delta\)ABC vuông tại A (gt)

=> \(AB^2+AC^2=BC^2\) (ĐL Pi-ta-go)

=> \(BC^2=6^2+8^2=36+64=100\)

=> BC = 10cm

\(\Delta\)HBA ~ \(\Delta\)ABC (cmt)

=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\) (ĐN 2 \(\Delta\) ~)

=> \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot8}{10}=4,8\)cm

c) Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt)

=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\) (ĐN 2 \(\Delta\) ~)

=> \(AB\cdot AB=BC\cdot BH\) (t/c TLT)


Các câu hỏi tương tự
Mai Thị Bích Ngọc
Xem chi tiết
Linh Chii
Xem chi tiết
Xích Long
Xem chi tiết
Phạm Thư
Xem chi tiết
Gallavich
Xem chi tiết
Nguyễn Mỹ
Xem chi tiết
Tham Nguyen
Xem chi tiết
Coc Chanh
Xem chi tiết
nguyễn vũ thành công
Xem chi tiết