a) Ta có: \(AB = a\tan \alpha \). Khi quay tam giác AOB quanh trục Ox ta được khối nón tròn xoay có bán kính đáy \(r = AB = a\tan \alpha \) và chiều cao \(h = OA = a\).
Thể tích khối nón là: \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi .a.{a^2}{\tan ^2}\alpha = \frac{1}{3}\pi .{a^3}{\tan ^2}\alpha \) .
b) Theo a ta có: \(V = \frac{1}{3}\pi {a^3}{\tan ^2}\alpha \).
Ta có: \(V' = \frac{2}{3}\pi {a^3}\tan \alpha .\frac{1}{{{{\cos }^2}\alpha }}\). Với \(0 < \alpha \le \frac{\pi }{4} \Rightarrow 0 < \tan \alpha < 1\). Do đó, \(V' > 0\) nên hàm số V đồng biến trên \(\left( {0;\frac{\pi }{4}} \right)\).
Do đó, \(\mathop {\max }\limits_{\left( {0;\frac{\pi }{4}} \right]} V = V\left( {\frac{\pi }{4}} \right) = \frac{1}{3}\pi {a^3}{\tan ^2}\frac{\pi }{4} = \frac{1}{3}\pi {a^3}\).
Vậy giá trị lớn nhất của V là \(\frac{1}{3}\pi {a^3}\) khi \(\alpha = \frac{\pi }{4}\).