Bài 13. Cho tam giác ABC, từ điểm D trên cạnh BC kẻ các đường thẳng song song với các cạnh AB và AC, chúng cắt các cạnh AB và AC theo thứ tự tại E và F. Chứng minh rằng: \(\frac{AF}{AB}+\frac{AE}{AC}=1\)
Giải giúp mình với
Cho tam giác ABC, trên AB lấy I và K sao cho AI=IK=KB, trên BC lấy D và E sao cho BD=DE=EC. Trên AC lấy F và G sao cho AF=FG=GC. Gọi M là giao điểm của AD và BF, N là giao điểm của BG và CK, P là giao điểm của AE và CI.
a) Chứng minh rằng: Các cạnh của tam giác MNP song song với các cạnh của tam giác ABC
b) Tính diện tích tam giác MNP theo diện tích tam giác ABC
Giúp với
Bài 1. Cho tam giác ABC nhọn (AB<AC) vẽ đường cao BD, CE
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c) Tia DE cắt CD tại i. Chứng minh iB.iC=iE.iD
d) Gọi O là trung điểm BC. Chứng minh iD.iE=Oi^2 - OC^2
Bài 2. Cho tam giác ABC vuông tại A, kẻ đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2=HB.HC
b) Chứng minh AH^2=HB.HC
c) kẻ HD vuông AC tại D. Đường trung tuyến CM của tam giác ABC cắt tại HD tại N. Chứng minh HN phần BM = CN phần CM và HN=DN
Bài 3. Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, AH là đường cao. Tính BC, AH
Bài 4. Cho tam giác ABC (AB<AC), tia phân giác của góc A cắt cạnh BC tại D. Từ B kẻ BE vuông AD (E thuộc AD) , từ C kẻ CF vuông AD (F thuộc AD). Chứng minh :
a) tam giác ABE đồng dạng tam giác ACF
b) AB.AF = AC.AE
c) BE phần CF = DE phần DF
Bài 5. Cho tam giác ABC vuông tại A, lấy điểm D bất kì thuộc cạnh BC. Từ D kẻ đường thẳng vuông góc với AB tại E, vuông góc AC tại F
a) Chứng minh tam giác BED đồng dạng tam giác BAC
b) Chứng minh DB phần DC = FA phần FC
c) Trên tia đối của tia ED lấy điểm K sao cho EK=ED. Gọi H là giao điểm của KC và EF. Chứng minh tam giác HKE đồng dạng tam giác HCF
d) chứng minh DH//BK
Xin giúp em câu toán hình này với ạ.
Cho tam giác ABC vuông tại A ( AB<AC ) , đường cao AH .
A ) C/M : Tam giác AHB đồng dạng với tam giác CAB và AB^2 = BH . BC
B) Kẻ HS vuông góc với AC , HT vuông góc với AB . Chứng minh AT.AB = AS.AC và BT/AB + CS/AC = 1
C) Trên tia HC lấy điểm E sao cho HE = HA , Từ E kẻ đường thẳng vuông góc với BC cắt AC tại M , từ C kẻ đường thẳng d vuông góc với BC cắt tia phân giác góc CEM tại F . Chứng minh 3 điểm H, M , F thẳng hàng.
Em xin cảm ơn.
Cho tam giác ABC có AB= 6cm, AC=8cm, BC=7cm. Các đường cao BD và CE cắt nhau tại H. Gọi M là chân đường phân giác kẻ từ A xuống BC, gọi K là hình chiếu của D trên BC.
a) Chứng mình: BH.BD = BK.BC
b) Tính BM, MC
c) Chứng mình BH.BD + CH.CE = \(BC^2\)
cho tam giác ABC vuông tại A ( AB<AC). Đường cao AH. Gọi D là điểm đối xứng của A Qua H. Đường thẳng kẻ qua D song song vwois AB cắt BC và AC lần lượt là M và N
a) tứu gics ABDM là hình gì? Vì sao?
b) Chứng minh: M là trực tâm của tam giác ABC
c) Gọi I là trung điểm của MC. Chứng minh góc HNI là góc vuông
Cho tam giác ABC có 3 góc nhọn (AB<AC),các đường cao BE và CF cắt nhau tại H.
a/chứng minh: tam giác ABE đồng dạng tam giác ACF.
b/chứng minh:HB.HE=HC.HF
c/chứng minh:tam giác AEF đồng dạng tam giác ABC.
d/Gọi D là giao điểm của AH và BC.CHỨNG MINH DB.DC=DA.DH