Bài 6 (3 điểm) Cho tam giác ABC nhọn có AB < AC. Kẻ 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh DABE ∽ DACF và AE. AC = AF. AB
b) Kẻ AH cắt BC tại D. Chứng minh AD vuông góc BC và góc ADE bằng góc ACH
Cho tam giác ABC có ba góc nhọn . Đường cao AF , BE cắt nhau tại H . Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By vuông góc với BC . Tia Ax và By cắt nhau tại K .
a) Chứng minh : tam giác HAE đồng dạng với tam giác HBF.
b) Chứng minh : CE.CA=CF.CB.
c) Chứng minh góc CFE bằng góc CAB.
d) Nếu tam gics ABC cân tại C, chứng minh rằng ba điểm C, H, K thẳng hàng,
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEG = 90
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEj = 90
Cho tam giác ABC nhọn ( AB < AC ) có ba đường cao AD , BE , CF cắt nhau tại H.
a ) Chứng minh : tam giac ABE đồng dạng tam giác ACF
b) Chứng minh EC.HF=BF.HE
c) Chứng minh góc HEF = góc HCB
d) biết AE=9cm, AB=12cm. tính s tam giác ABC phần
tam giác AEF
cho tam giác ABC nhọn hai đường cao BD CE cắt nhau tại H tia AH cắt BC tại D
vẽ trung tuyến BM của tam giác ABC cắt KI tại N chứng minh MN//EF
Bài 8 (1,0 đ): Cho tam giác ABC nhọn kẻ ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh: AH.DH+BH.EH=2CH.FH
cho tam giác ABC có 3 góc nhọn (AB<AC) vẽ 3 đường cao AD,BF,CF cắt nhau tại H . Chứng minh rằng : a) AF . BC = CF . AH b) tam giác FHD đồng dạng tam giác AHC c) góc AFC = góc ACB
Mn giúp mik nha :3
Cho tam giác MNQ có 3 góc nhọn. Vẽ các đường cao NE, QF
a) Chứng minh tam giác MNE đồng dạng tam giác MQF
b) Chứng minh tam giác MEF đồng dạng tam giác MNQ
c) Gọi I, K lần lượt là trung điểm của NQ, EF. Chứng minh: tam giác EIF cân; IK ⊥ EF tại K.
c) Cho NQ = 12cm, diện tích tam giác MEF = 1/9 diện tích tam giác MNQ. Tính diện tích IEF = ?
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU