Bài 3: Diện tích tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
송중기

Cho tam giác đều ABC cạnh a và điểm M bất kì nằm trong tam giá đó. gọi H, K,T tương ứng là hình chiếu vuông góc của điểm M trên BC, CA,AB. Chứng minh rằng MH + Mk + Mt = \(\dfrac{a\sqrt{3}}{2}\)

Akai Haruma
19 tháng 11 2017 lúc 21:44

Lời giải:

Từ $A$ kẻ đường cao $AD$. Vì $ABC$ là tam giác đều nên $AD$ đồng thời là đường trung tuyến của tam giác $ABC$

\(\Rightarrow BD=\frac{BC}{2}\)

Áp dụng định lý Pitago: \(AD=\sqrt{AB^2-BD^2}=\sqrt{a^2-(\frac{a}{2})^2}=\frac{\sqrt{3}a}{2}\)

Khi đó:

\(S_{ABC}=\frac{AD.BC}{2}=\frac{\sqrt{3}a.a}{4}=\frac{\sqrt{3}a^2}{4}(1)\)

Mặt khác \(S_{ABC}=S_{MAB}+S_{MAC}+S_{MBC}\)

\(=\frac{MT.AB}{2}+\frac{MK.AC}{2}+\frac{MH.BC}{2}\)

\(\Leftrightarrow S_{ABC}=\frac{a(MT+MH+MK)}{2}(2)\)

Từ (1); (2)\(\Rightarrow \frac{a(MT+MH+MK)}{2}=\frac{\sqrt{3}a^2}{4}\)

\(\Leftrightarrow MH+MK+MT=\frac{\sqrt{3}a}{2}\)

Vậy ta có đpcm.