Cho tam giác ABC nội tiếp đường tròn (O). Biết BC = 2cm , A =45^ . a. Tính diện tích hình tròn (O). b. Tính diện tích hình viên phân giới hạn bởi dây BC và cung nhỏ BC. C,Xác định vị trí của điểm A để diện tích tam giác ABC là lớn nhất. Tính diện tích lớn nhất đó .. Giúp tớ với
Câu 4: Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH.
1. Cho AB = 4cm; AC = 3cm. Tính độ dài các đoạn thẳng BC, AH.
2. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai D.
a) Chứng minh BD là tiếp tuyến của đường tròn (C).
b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. Chứng minh: 2 PE.QF = EF
Cho tam giác ABC cân tại A biết ab bằng ac bằng 5 cm BC = 6 cm Hỏi đường cao AD và Be của tam giác ABC cắt nhau tại H D thuộc BC E thuộc AC
a Tính độ dài đoạn thẳng ad
B tính số đo góc C và góc ABC
C Gọi O là tâm đường tròn ngoại tiếp tam giác AC Chứng tỏ de là tiếp tuyến của đường tròn tâm O
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC), có AB = 9cm; AC =12cm
a) Tính AH.
b) Gọi I và K lần lượt là hình chiếu của H lên các cạch AB và AC. Tính: AI.IB + AK.KC.
c) Chứng tỏ rằng: Bốn điểm A,I,H,K thuộc một
Bài 4 cho tam giác ABC vuông tại a, đường cao AH biết AC = 8 cm BC = 12 cm
a .tính AB và AH
b .tính tan góc B góc có góc C (với góc B góc C là các góc của tam giác ABC)
c .Lấy điểm D đối xứng với điểm C qua A, kẻ AE vuông góc với BD (E thuộc BD). Chứng minh BD là tiếp tuyến của đường tròn(A, AH)
Cho tam giác ABC vuông tại A, đường cao AH
1) Tính độ dài các đoạn thẳng HA, HB và số đo góc C khi biết AB= 3cm; AC= 4cm
2) Đường tròn tâm B bán kính BA cắt đường thẳng AH tại điểm thứ hai là D. Chứng minh rằng bốn điểm A,B,C,D cùng thuộc một đường tròn
3) Vẽ đường kính DE của đường tròn (B). Đường thẳng qua B và vuông góc với DE cắt AD tại I và cắt AE tại F. Gọi K là giao điểm của EI và DF. Chứng minh rằng góc BAK = góc BKA
MN GIẢI GIÚP MK VS! MK ĐANG CẦN GẤP
Bài 1:Cho đường tròn (O;R), đường kính AB, dây cung BC=R
a, Tính các cạnh và các góc chưa biết của tam giác ABC theo R
b, Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn (O) ở D
CM: OD là đường trung trực của AC
tam giác ADC là hình gì? Vì sao?
c, CM: DC là tiếp tuyến của đường tròn (O)
d, Đường thẳng OD cắt đường tròn (O) tại I. Cm: I là tâm đường tròn nội tiếp tam giác ADC
Cho tam giác ABC vuông tại A( AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng :
a) Tam giác EBF là tam giác cân
b) Tam giác HAF là tam giác cân
c) HA là tiếp tuyến của đường tròn (O)
cho tam giác ABC vuông tại A(AB<AC), đường cao AH.Gọi D và E lần lượt là các đường vuông góc kẻ từ H xuống AB và AC
a, cho BH=4cm ,CH=9cm. Tính AH, DE
b, chứng minh bốn điểm A,D,H,E cùng nằm trên một đường tròn
c,đường phân giác BAH cắt BC tại K. Gọi I là trung điểm của AK, Chứng minh CI vuông góc AK