Cho tam giác ABC vuông tại A , đường cao AH . Kẻ HE vuông góc với AB ( E thuộc AB ), HF vuông góc với AC ( F thuộc AC ) . a, CM : EF=AH
b, Gọi M , N thứ tự lần lượt là trung điểm của HB, HC . Cm: S tứ giác MEFN=S 1/2tam giácABC
c , Tứ giác MNFE là hình gì ? Vì sao
Cho tam giác ABC vuông tại A (AB < AC) có trung tuyến AM. Kẻ MN vuông góc AB và MP vuông góc AC (N thuộc AB, P thuộc AC).
a. Tứ giác ANMP là hình gì? Vì sao?
b. Chứng minh: NA = NB, PA = PC và tứ giác BMPN là hình bình hành.
c.Gọi E là trung điểm BM; F là giao điểm của AM và PN. Chứng minh:
- Tứ giác ABEF là hình thang cân;
- Tứ giác MENF là hình thoi.
d. Kẻ đường cao AH của tam giác ABC, MK // AH (K thuộc AC). Chứng minh: BK vuông góc HN.
Cho tam giác ABC vuông tại A (AB < AC) có trung tuyến AM. Kẻ MN vuông góc AB và MP vuông góc AC (N thuộc AB, P thuộc AC).
a. Tứ giác ANMP là hình gì? Vì sao?
b. Chứng minh: NA = NB, PA = PC và tứ giác BMPN là hình bình hành.
Cho tam giavs ABC cân tại A, đường cao AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I.
A. Tứ giác AMCK là hình gì? Vì sao
B. Tính diện tích tam giác ABC biết AM=6cm, BC=4cm
C. Tam giác ABC có thêm điều kiện gì thì tứ giác AMCK là hình vuông?
Cho tam giác ABC, góc a bằng 90 độ, M là trung điểm của BC, D là trung điểm của AB, E đối xứng với M qua D a) chứng minh AB là trung trực của EM b) tứ giác AEMC và tứ giác AEBM là hình gì?
Cho tam giác ABC vuông tại A. đường cao AH. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC.
a) Chứng minh rằng AH = DE.
b) Gọi I là trung điểm của HB, K là trung điểm của HC. Chứng minh rằng DI // EK.
Cho tứ giác ABCD gọi M N P Q lần lượt là trung điểm của các cạnh AB BC CD DA
A) Chứng minh tứ giác MNPQ là hình bình hành
b) tìm điều kiện hai đường chéo AC và BD của tứ giác ABCD để MNPQ là hình chữ nhật