Cho tam giác ABC vuông tại A (AB < AC) có trung tuyến AM. Kẻ MN vuông góc AB và MP vuông góc AC (N thuộc AB, P thuộc AC).
a. Tứ giác ANMP là hình gì? Vì sao?
b. Chứng minh: NA = NB, PA = PC và tứ giác BMPN là hình bình hành.
c.Gọi E là trung điểm BM; F là giao điểm của AM và PN. Chứng minh:
- Tứ giác ABEF là hình thang cân;
- Tứ giác MENF là hình thoi.
d. Kẻ đường cao AH của tam giác ABC, MK // AH (K thuộc AC). Chứng minh: BK vuông góc HN.
Cho tam giác ABC vuông tại A , đường cao AH . Kẻ HE vuông góc với AB ( E thuộc AB ), HF vuông góc với AC ( F thuộc AC ) . a, CM : EF=AH
b, Gọi M , N thứ tự lần lượt là trung điểm của HB, HC . Cm: S tứ giác MEFN=S tam giácABC
c , Tứ giác MNFE là hình gì ? Vì sao
Cho tam giác ABC vuông tại A , đường cao AH . Kẻ HE vuông góc với AB ( E thuộc AB ), HF vuông góc với AC ( F thuộc AC ) . a, CM : EF=AH
b, Gọi M , N thứ tự lần lượt là trung điểm của HB, HC . Cm: S tứ giác MEFN=S 1/2tam giácABC
c , Tứ giác MNFE là hình gì ? Vì sao
Cho tan giác ABC vuông tại A, điểm D thuộc cạnh AC. Gọi E, F, G theo thứ tự là trung điểm của BD, BC, DC. Chứng minh rằng tứ giác AEFG là hình thang cân.
Cho tam giác ABC vuông tại A (AB < AC) có trung tuyến AM. Kẻ MN vuông góc AB và MP vuông góc AC (N thuộc AB, P thuộc AC).
a. Tứ giác ANMP là hình gì? Vì sao?
b. Chứng minh: NA = NB, PA = PC và tứ giác BMPN là hình bình hành.
Cho tam giác ABC, góc a bằng 90 độ, M là trung điểm của BC, D là trung điểm của AB, E đối xứng với M qua D a) chứng minh AB là trung trực của EM b) tứ giác AEMC và tứ giác AEBM là hình gì?