a, Vì AH là đường cao của ΔABC
⇒ AH ⊥ BC
⇒ \(\widehat{AHB}=\widehat{AHC}\)
ΔAHB có \(\widehat{AHB}=90^0\)
⇒ \(\widehat{B}+\widehat{A_2}=90^0\)
Mà \(\widehat{A_1}+\widehat{A_2}=90^0\)
⇒ \(\widehat{A_1}=\widehat{B}\)
ΔAHB và ΔCHA có \(\left\{{}\begin{matrix}\widehat{AHB}=\widehat{AHC}=90^0\left(cmt\right)\\\widehat{A_1}=\widehat{B}\left(cmt\right)\end{matrix}\right.\)
⇒ ΔAHB ~ ΔCHA (g.g)(đpcm)
Ta có: \(\widehat{B}+\widehat{C}=\)90*(△ABC vuông)
\(\widehat{HAC}+\widehat{C}=90\)*(△HAC vuông)
⇒\(\widehat{B}=\widehat{HAC}\)
Xét △AHB và △CHA có:
\(\left\{{}\begin{matrix}\widehat{H_1}=\widehat{H_2}=90^{\cdot}\\\widehat{B}=\widehat{HAC}\end{matrix}\right.\)
⇒△AHB∼△CHA