Cho tam giác ABC vuông tại A có AC>AB. Gọi I là tâm đường tròn nội tiếp tam giác ABC, các tiếp điểm của đường tròn nội tiếp với các cạnh AB,BC,CA lần lượt tại M,N,P
1) Chứng minh AMIP là hình vuông
2) Đường thẳng AI cắt PN tại D. Chứng minh 5 điểm M,B,N,O,I nằm trên một đường tròn
3) Đường thẳng BI và đường thẳng CI cắt AC,AB lần lượt tại E,F. Chứng minh BE.CF=2 BI.CI
Cho tam giác abc vuông tại B ( BC>AB ) . Gọi I là tâm đường tròn nội tiếp tam giác các tiếp điển của đường tròn nội tiếp với các cạnh AB , BC , CA lần lượt là P,Q ,R. a,chứng minh rằng BPIQ là hình vuông b, Đường thẳng PI cắt QR tại D . CHỨNG minh P,A,R,D,I nằm trên 1 đường tròn
Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), các đường cao BD và CE cắt nhau tại H. Gọi F và K lần lượt là giao điểm của AH với BC, DE
a) Chứng minh: Tứ giác ADHE nội tiếp đường tròn và xác định tâm I của đường tròn.
b) Chứng minh: DB là phân giác của góc EDF và \(\dfrac{KH}{HF}=\dfrac{DK}{DF}\)
c) Đường thẳng CE cắt đường tròn tại điểm thứ hai N, NF cắt đường tròn tại điểm thứ hai P, gọi Q là trung điểm của DF. Chứng minh A, P, Q thẳng hàng
Cho tam giác ABC vuông ở A. Trên cạnh AC lấy 1 điểm M, dựng đường tròn tâm (O) có đường kính MC. Đường thẳng BM cắt đường tròn tâm (O) tại D, đường thẳng AD cắt đường tròn tâm (O) tại S.
1) Chứng minh tứ giác ABCD là tứ giác nội tiếp và CA là tia phân giác của góc BCS
2) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh các đường thẳng BA, EM, CD đồng quy.
3) Chứng minh M là tâm đường tròn nội tiếp tam giác ADE.
giải chi tiết giúp mình với ạ!!
bài 8/77
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ,các đường cao AI < BK của tam giác ABC cắt nhau tại H ( I thuộc BC , K thuộc AC ) .AI vad BK cắt đường tròn O lần lượt tại D và E
A/chứng minh tứ giác ABIK nội tiếp
B/ gọi M là trung điểm của DE . chứng minh 3 điểm O,M,C thẳng hàng
C/chứng mình IK song song ED
thankkkkk
Tam giác ABC nội tiếp đường tròn (T) có tâm O có AB =AC và góc BAC > 90 độ. Gọi M là trung điểm AC, tia MO cắt (T) tại D, BC lần lượt cắt AO và AD tại N và P.
a) Phân giác góc BDP cắt BC tại E, ME cắt AB tại F. Chứng minh CA =CP và ME vuông góc với DB
b ) Chứng minh tam giác MNE cân, tính tỉ số DE/DF
Cho tam giác ABC cân đỉnh A nội tiếp trong đường tròn tâm O. Gọi M, N, P lần lượt là các điểm chỉnh giữa các cung nhỏ AB, BC, CA; BP cắt AN tại I; MN cắt AB tại E. Chứng minh rằng:
1. Tứ giác BCPM là hình thang cân; góc ABN có số đo bằng 900.
2. Tam giác BIN cân; EI // BC.
Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E,BD và CE cắt nhau tại H.
a) Chứng minh: AEHD nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác AEHD
b) Chứng minh: IE là tiếp tuyến của đường tròn (O)
c) Vẽ đường lính EF của đường tròn (I),OF cắt đường tròn (I) tại M ,OI cắt ED tại K.Chứng minh: Tứ giác MKIF nội tiếp.