Cho tam giác ABC vuông tại A có AB = 8, AC = 15, đg cao AH.
a) Tính BC, AH?
b) Gọi M, N lần lượt là hình chiếu của H trên AB, AC. CM: AM.AB = AN.AC
c) Gọi I, K lần lượt là trung điểm của BH, CH. Tứ giác MNKI là hình gì? Vsao?
d) Tính diện tích tứ giác MNKI?
e) Đường thẳng qua A vuông góc với MN cắt BC tại E. CM E là trung điểm BC
a: \(BC=\sqrt{8^2+15^2}=17\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{120}{17}\left(cm\right)\)
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)