Bài 1. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt cạnh AC tại D. Vẽ đường thẳng qua A vuông góc với BD cắt BC tại E.
a) Chứng minh BA=BE b) Chứng minh tam giác BED là tam giác vuông. c) So sánh AD và DC.
Cho tam giác ABC vuông tại A tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho AB = BE. a/ Chứng minh AD = DE và DE vuông góc BC b/ So sánh AB và EC
Cho tam giác ABC có AB<AC. Gọi M là trung điểm của BC, CHỨNG MINH GÓC MAB>GÓC MAC. Từ đó suy ra p/giác của cóc BAC cắt cạnh BC tại 1 điểm nằm giữa B và M
cho tam giác abc có ab>ac. trung tuyến Am, đường phân giác của góc BAC cắt Bc tại M. đường cao Ah. chứng minh D nằm giữa H và M
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM a BE là tia phân giác của góc ABC b AG đi qua trung điểm của DC
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM a BE là tia phân giác của góc ABC b AG đi qua trung điểm của DC
Cho tam giác ABC biết M là trung điểm của BC; AB=AC a) chứng minh tam giác AMB và tam giác AMC b) so sánh góc AMC và góc AMC