Cho tam giác ABC vuông tại A, AB = a, góc ABC = 60 độ nội tiếp (O), kẻ đường cao AH. Đường tròn (I) đường kính AH cắt AB, AC và đường tròn (O) thứ tự tại D,E,F. AF cắt BC tại S
a) Tứ giác HDAE có dạng đặc biệt nào?
b) Chứng minh tứ giác BDEC nội tiếp
c) Chứng minh OA vuông góc với DE
d) Chứng minh 3 điểm S, D, E thẳng hàng
a) Ta có: \(\widehat{EAD}=90^o\) theo giả thiết (1)
\(\widehat{ADH}=90^o\) : góc nội tiếp chắn nửa đường tròn (2)
\(\widehat{AEH}=90^o\) : góc nội tiếp chắn nửa đường tròn (3)
Từ (1), (2), (3) suy ra HDAE là hình chữ nhật
b) Ta phải chứng minh \(\widehat{ECB}+\widehat{EDB}=180^o\)
Lại có: \(\widehat{EDB}=\widehat{EDH}+\widehat{HDB}=90^o+\widehat{EDH}\)
=> Phải chứng minh \(\widehat{ECB}+\widehat{EDH}=90^o\)
Thật vậy, \(\widehat{ECB}+\widehat{EAH}=90^o\)
Mà \(\widehat{EAH}=\widehat{EDH}\) vì HDAE là hình chữ nhật theo chứng minh trên
=> \(\widehat{ECB}+\widehat{EDH}=90^o\)
=> BDEC là tứ giác nội tiếp. (đpcm)
c) Gọi giao điểm của OA và DE là K
Ta có: \(\widehat{ECB}+\widehat{EDH}=90^o\) (*)
Mặt khác: \(\widehat{AED}=\widehat{EDH}\) vì HEAD là hình chữ nhật (**)
Do \(\Delta OCA\) cân tại O nên \(\widehat{OCA}=\widehat{OAC}\) (***)
Từ (*), (**), (***) suy ra \(\widehat{EKA}=90^o\)
=> \(OA\perp DE\) (đpcm)
d) Chưa nghĩ ra :(