1. Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E.
a) Chứng minh: EA.EB = ED.EC và góc EAD = góc ECB
b) Cho góc BMC = 1200 và SAED = 36 cm2. Tính SECB?
c) Chứng minh rằng khi điểm M di chuyển trên cạnh AC thì tổng BM.BD + CM.CA có giá trị không đổi.
d) Kẻ DH ⊥ BC (H∈ BC). Gọi P, Q lần lượt là trung điểm của các đoạn thẳng BH, DH. Chứng minh CQ ⊥ PD.
Cho hình bình hành ABCD, kẻ AE và CF vuông góc với BD.
a) Tứ giác AECF là hình gì? Vì sao?
b) AE cắt CD tại I, CF cắt AB tại K. Chứng minh trung điểm O của IK thuộc đường chéo BD.
c) Vẽ BM và DN vuông góc AC. Chứng minh EMFN là hình bình hành.
d) Các phân giác AG và BH của tam giác AOB cắt nhau tại P. Các phân giác DY, Cl của tam giác DOC cắt nhau tại Q. Chứng minh O là trung điểm PQ.
Cho hình bình hành ABCD, kẻ AE và CF vuông góc với BD.
a) Tứ giác AECF là hình gì? Vì sao?
b) AE cắt CD tại I, CF cắt AB tại K. Chứng minh trung điểm O của IK thuộc đường chéo BD.
c) Vẽ BM và DN vuông góc AC. Chứng minh EMFN là hình bình hành.
d) Các phân giác AG và BH của tam giác AOB cắt nhau tại P. Các phân giác DY, Cl của tam giác DOC cắt nhau tại Q. Chứng minh O là trung điểm PQ.
Cho tam giác ABC vuông cân tại A. Trên các cạnh góc vuông AB,AC lấy hai điểm D,E sao cho AD=AE. Qua D vẽ đường thẳng vuông góc với BE cắt BC ở K. Qua A vẽ đường thẳng vuông góc với BE cắt BC ở H. Gọi M là giao điểm của DK và AC
a) CM tam giác MDC cân
b) CM HK=HC
Cho tam giác ABC nhọn , đường cao BH , CK cắt nhau tại E . Qua B kẻ đường thẳng Bx vuông góc với BA , qua C kẻ đường thẳng Cy vuông góc với AC , Bx và Cy cắt nhau tại D
a. Tứ giác BDCE là hình gì
b. Gọi M là trung điểm của BC CMR M là trung điểm của ED
c. Nếu DE đi qua A thì ABC là tam giác gì
d. Tìm mối liên hệ giữa góc A và góc D của tứ giác ABCD
Cho tam giác ABC nhọn (AB<AC) hai đường cao BE và CF cắt nhau tại H.Vẽ đường thẳng vuông góc với AB tại B, vẽ đường thẳng vuông góc với AC tại C , hai đường thẳng này cắt nhau tại D
a) C/m : AH vuông góc với BC và tứ giác BHCD là hình bình hành
b) Gọi M là trung điểm BC. C/m : 3 điểm H, M, D thẳng hành và tam giác EMF cân
c) Gọi K là điểm đối xứng của H qua BC .C/m BD=CK
d) Dường thẳng vuông góc tại M cắt AD tại L. C/m AH = 2ML
cho tam giác ABc cân tại a. lấy D thuộc đoạn thẳng bc trên tia đối của tia cb lấy e sao cho ce = bd. Đường thẳng vuông góc bc kẻ từ d cắt ba tại k. Đường thẳng bc kẻ từ e cắt ac tại n. Mn giao bc tại i.
a) cm DM=EN
b) IM=IN,BC<MN
c) Gọi O là giao của đường phân giác góc A và đường thằng vuông góc MN tại I. CM tam giác BMO = CNO, O cố định
Cho tam giác ABC có trực tâm H.Trên nửa mặt phẳng bờ AB chứa điểm C kẽ tia Bx vuông góc với AB, trên nửa mặt phẳng bờ AC chứa điểm B kẽ tia Cy vuông góc với AC, Bx cắt Cy tại D
a) Chứng minh: tứ giác BHCD là hình bình hành.
b)Gọi I là trung điểm của BC. Chứng minh: ba điểm H,I,D thẳng hàng.
c)Đường thẳng vuông góc với BC tại I cắt AD tại K. chứng minh: AH=2IK
1 cho hình thang ABCD (AB//CD) có AB=AD và AC=CD. Tính các góc của hình thang (vẽ hình dùm mình)
2. cho tam giác ABC vuông tại A có góc B= 6o độ. gọi tia Bx là tia phân giác của góc B cắt AC tại E. vẽ tia Cy vuông góc BC sao cho Cy cắt Bx tại F.
a) c/m tam giác CEF đều
b)vẽ CD vuông góc với EF. c/m tứ giác ABCD là hình thang vuông.( câu này cũng vẽ hình dùm mình un)