Bài 7. Tam giác cân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC. Chứng minh tam giác MAB vuông cân.

Kiều Sơn Tùng
17 tháng 9 2023 lúc 21:32

Tam giác ABC vuông cân tại A nên \(\widehat A = 90^\circ ;\widehat B = \widehat C; AB = AC\).

Tổng ba góc trong một tam giác bằng 180° nên \(\widehat B = \widehat C = 90:2 = 45^\circ \).

Xét tam giác ABM và tam giác ACM có:

AB = AC

AM chung

BM = CM

\(\Rightarrow \Delta ABM = \Delta ACM\) (c.c.c)

\(\Rightarrow \widehat {BAM} = \widehat {CAM}\) (2 góc tương ứng)

Mà \(\widehat {BAM} + \widehat {CAM}=\widehat{BAC}=90^0\)

\(\Rightarrow \widehat {BAM} = \widehat {CAM} = 90:2 = 45^\circ \).

Xét tam giác MAB: \(\widehat {MBA} = \widehat {BAM} = 45^\circ  \Rightarrow \widehat {BMA} = 90^\circ ;MB = MA\).

Vậy tam giác MAB vuông cân tại M.


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết