Bài 3: Cho tam giác ABC vuông tại A có BC = 20 cm, AC = 16 cm. Vẽ đường cao AH.
a) Chứng minh: HBA ABC; HBA HAC.
b) Chứng minh: AB2 = BH. BC; AH2 = HB.HC
c) Tính AB, AH, BH.
d) Vẽ đường phân giác AD của tam giác ABC (D BC). Tính BD, CD. (Kết quả làm tròn đến chữ số thập phân thứ nhất).
e*) Trên AH lấy điểm K sao cho AK = 3,6cm. Từ K kẻ đường thẳng song song với BC, cắt AB và AC lần lượt tại M và N. Tính diện tích tứ giác BMNC.
Cho tam giác ABC vuông tại A có AB = 6cm ; AC= 8cm . Đường cao AH và phân giác BD cắt nhau tại I ( H trên BC và D trên AC ) .
a) Tính độ dài AD , DC
b) Cm : tam giác ABC đồng dạng với tam giác HBA và AB^2 = BH.BC
c) Cm : tam giác ABI đồng dạng với tam giác CBD
d) Cm : \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
( Giải giúp mình câu c với d ạ cảm ơn ^^ )
Cho tam giác ABC , trung tuyến AI , đường phân giác của góc AIB cắt AB tại D, tia phân giác của góc AIC cắt AC tại E a) cm AD/DB=AE/EC và DE // BC AI cắt DE tại O . cm O là trung điểm DE biết BC = 20cm AI = 15 tính DE
Cho tam giác ABC vuông tại A đường cao AH đường phân giác AD vẽ HN vuông góc với AC cho biết AB = 21 cm,AC=28 cm.Tính AH BD DC
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm và đường cao AH a. Cm tam giác ABC ~ tam giác AHB b. Tính BC,HB c. Qua B vẽ đường thẳng d vuông góc với AC, tia phân giác của góc BAC cắt BC tại M và cắt đường thẳng d tại N. Cm AB/AC= MN/AM
Cho tam giác ABC (AB<AC) và đường phân giác AD. Điểm M và N lần lượt nằm trên các cạnh AB và AC sao cho BM=CN. Gọi O là giao điểm của BN và CM. Đường thẳng qua O song song với AD cắt BC ở I. CMR: BI=CD.
( Đề thi HK II năm học 2018_2019) Cho tam giác nhọn ABC (AB < AC), đường cao AH. a) Vẽ HD song song AC (D thuộc AB). Giả sử BD = 4 cm, BH = AD = 6 cm. Tính HC. b) Kẻ HE vuông góc với AC tại E. Chứng minh: AHE ∽ ACH, suy ra AH2 = AE.AC. c) Kẻ HF vuông góc với AB tại F. Chứng minh AEF = ABC
Cho tam giác ABC, AB = 4,8 cm; BC = 3,6 cm; AC = 6,4 cm. Trên cạnh AB lấy điểm E sao cho AE = 2,4 cm, trên cạnh AC lấy điểm D sao cho AD = 3,2 cm. Gọi giao điểm của ED và CB là F.
a, C/m tam giác ABC đồng dạng với tam giác AFD
c, tính FD
?
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH
a) CM tam giác ABC đồng dạng tam giác HBA. Từ đó suy ra AB^2=BH.BC
b) Gọi D là điểm thuộc HC. Đường vuông góc với BC cắt AC tại E. CM góc ADC= góc BEC
c) CM CH/AC=DA/EB