Cho tam giác ABC vuông tại A, đường cao AH
a) Tính góc B, biết AH = 3, AB=2
b) AD là phân giác góc HAC, Từ D kẻ DK vuông góc BC cắt AC tại K. Chứng minh rằng BK là phân giác của góc ABC
c) Từ D kẻ DM vuông góc AC, CM/CK =(cosC)²
d) BK //HM
Bài 1: Cho hình bình hành ABCD có \(\widehat{A}\)=45, AB=BD=18
a) Tính độ dài AD
b) Tính diện tích hbh ABCD
Bài 2: Cho tam giác nhọn ABC, AB<AC, đường cao AH=h và đường trung tuyến AM, đặt \(\widehat{HAM}=\alpha\). CMR:
a) HC - HB =\(2h\tan\alpha\)
b) \(\tan\alpha=\dfrac{\cot C-\cot B}{2}\)
Bài 3: Cho tam giác nhọn ABC. CMR: \(\dfrac{BC}{\sin A}=\dfrac{CA}{\sin B}=\dfrac{AB}{\sin C}\)
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Đặt BC=a, CA= b, AB=c. CMR
a)\(AH=a\sin B\cos B\)
b)\(BH=a\cos^2B\)
c)\(CH=a\sin^2B\)
CÁC BẠN GIẢI CHI TIẾT GIÙM MÌNH NHÉ
MÌNH CẢM ƠN Ạ!
Cho tam giác ABC vuông tại A, vẽ đường cao AH của tam giác ABC (H thuộc BC).
1) Nếu sin ACB = 3/5 và BC = 20 cm. Tính các cạnh AB, AC, BH và góc ACB (số đo góc làm tròn đến độ)
2) Đường thẳng vuông góc với BC tại B cắt đường thẳng AC tại D. Chứng minh: AD.AC = BH.BC.
3) Kẻ tia phân giác BE của DBA ( E thuộc đoạn DA). Chứng minh: tan EBA = AD/AB + BD
4) Lấy điểm K thuộc đoạn AC, Kẻ KM vuông góc với HC tại M, KN vuông góc với AH tại N. chứng minh : NH.NA+MH.MC=KA.KC
Cho tam giác ABC vuông tại A,kẻ đường cao AH AB=3cm,AC=4cm a)tính BC,AC b)tính góc BAH c)Chứng MINH BH=CH.tan2B
Cho tam giác ABC vuông tại A ( AB < AC ) có đường cao AH và AH = 12 cm , BC = 25 cm
a) Tính độ dài BH ,CH ,AB ,AC
b) Vẽ trung tuyến AM . Tìm số đo của góc AMH
c) Tính diện tích của tam giác AHM
Giúp mình với cố xong trước 9h nhé
Cho Tam giác ABC vuông tại A, đường cao AH:
a) cho biết AB=3cm, ÁC=4cm. Tính độ dài các đoạn thẳng BH, CH, AH và BC
b) cho biết BH=9cm, CH=16cm. Tính độ dài các đoạn thẳng AB,BC và AH
Mọi người giúp m vs
1. Cho tam giác ABC có góc A nhọn, đường cao BH,CK. CMR: nếu AB>AC thì BH>CK
1. Cho tam giác ABC vuông tại C, đường cao CK.
a) Tính BC, CK, BK và AK biết AB = 10cm , AC=8cm.
b) Gọi H và I theo thứ tự là hình chiếu của K trên BC và AC. Tứ giác CHKI là hình gì? Vì sao?
c) Chứng minh; \(\text{CB.CH=CA.CI}\)
d) Chứng minh: \(\dfrac{AI}{BH}=\dfrac{AC^3}{BC^3}\)
e) \(AB\cdot BH\cdot AI=CK^3\)
f) Gọi M là hình chiếu của K trên IH. Chứng minh: \(\dfrac{1}{KM^2}=\dfrac{1}{CH^2}+\dfrac{1}{CI^2}\)
2. Cho tam giác ABC cân tại A, các đường cao AH và BK. Kẻ đường thẳng vuông góc với BC tại B cắt tia CA tại D. Chứng minh:
a) \(BD=2AH\)
b) \(\dfrac{1}{BK^2}=\dfrac{1}{DC^2}+\dfrac{1}{4HA^2}\)
cho tam giác ABC vuông tại A biết AB = 5cm AC = 12cm BC = 13cm. Kẻ đường cao AH. Tính các cạnh và góc còn lại của tam giác AHB