Cho tam giác ABC nhọn có ba đường cao AD, BE và CF cắt nhau tại H
a) Chứng minh rằng: tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) Chứng minh rằng: BH.BE = BD.BC
c) Gọi N là giao điểm của EF và AD. Chứng minh rằng FC là tia phân giác của góc DEF, rồi suy ra: NH.AD = AN.HD.
mọi người giúp em giải câu c thôi ạ
cho tam giác abc có 3 góc nhọn 3 đường cao ad,be,cf cắt nhau tại h
a)chứng minh tam giác AHF đồng dạng với tam giác ABD
tam giác ACF đồng dạng vói tam giác ABE
b) AF.AB=AE.AC
c)tam giác AEF đồng dạng với tam giác ABC
d) cho BD=2cm:CD=3cm SABC=30cm^2
tính S HBC=?
giúp mik câu d với ạ!!!!!!!!!!!
Cho tam giác ABC (AB<AC) có đường cao AD (D thuộc BC)
a/ Chứng minh hai tam giác DAB và ACB đồng dạng
b/ Phân giác góc ABC cắt AC tại E, từ C vẽ đường thằng vuông góc với đường thẳng BE tại F chứng minh AE.AB=EC.BD
c/ Kẻ FH vuông AC tại H chứng minh hai góc BCF và HCF bằng nhau
d/ I là trung điểm BC, chứng minh I,H,F thẳng hàng
Cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh tam giác AEB ∽ tam giác AFC.
b) Chứng minh tam giác AEF ∽tam giác ABC.
c) Tia AH cắt BC tại D. Chứng minh FC là tia phân giác của góc DFE.
d) Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM. Chứng minh SAHM = 4SIOM.
Cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh DAEB ∽ DAFC.
b) Chứng minh tam giác AEF ∽ tam giác ABC.
c) Tia AH cắt BC tại D. Chứng minh FC là tia phân giác của góc DFE.
d) Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM. Chứng minh SAHM = 4SIOM.
Làm giúp mình câu c,d với!!!
cho tam giác ABC vuông tại A(AB<AC),đường trung tuyến AM.Qua M kẻ đường thẳng vuông góc với AM cắt AB tại E và cắt AC tại F.Kẻ AH vuông góc với BC,AH cắt EF tại I.Cm
a)góc BAM=góc ABM
b)góc ACB=góc AEF=>tam giác MBE đồng dạng với tam giác MFC
c)AB.AE=AC.AF
Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H
1. Chứng minh tam giác ABE và tam giác ACF đồng dạng
Xét \(\Delta ABE\) và \(\Delta ACF\) :
\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)
2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)
Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)
Xét tam giác AEF và tam giác ABC:
\(\widehat{A}\) chung
\(\dfrac{AB}{AC}=\dfrac{AF}{AE}\) (cmt )
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) ( hai góc t/ứ)
3.Vẽ DM vuông gosc với AC tại M . Gọi K là giao điểm của CH và DM . Chứng minh \(\dfrac{BH}{EH}=\dfrac{DK}{MK}\) và \(AH.AD+CH.CF=\dfrac{CD^4}{CM^2}\)
Bài 2 : Cho ba số \(x,y,z\) khác 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) . Tính giá trị của biểu thức \(P=\dfrac{2017}{3}xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)
Cho tam giác ABC vuông tại a có AB bằng 6 cm AC bằng 8 cm đường cao AH và đường phân giác BD cắt nhau tại I a) tính AC AD và DC b) chứng minh hai tam giác ABC và đồng dạng suy ra Ac2 = CH x BC c)chứng minh hai tam giác ABD và tam giác CDB đồng dạng b chứng minh IH x BC = IA. AD
Cho tam giác ABC vuông tại A có đường cao AH a. Chứng minh tam giác ABC đồng dạng tam giác HBA b. Cho biết BH =2cm, BC =6cm.tính AB c. Đường phân giác của góc B cắt AH tại I.chứng minh IA×AH=IH×AC