Giúp với
Bài 1. Cho tam giác ABC nhọn (AB<AC) vẽ đường cao BD, CE
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c) Tia DE cắt CD tại i. Chứng minh iB.iC=iE.iD
d) Gọi O là trung điểm BC. Chứng minh iD.iE=Oi^2 - OC^2
Bài 2. Cho tam giác ABC vuông tại A, kẻ đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2=HB.HC
b) Chứng minh AH^2=HB.HC
c) kẻ HD vuông AC tại D. Đường trung tuyến CM của tam giác ABC cắt tại HD tại N. Chứng minh HN phần BM = CN phần CM và HN=DN
Bài 3. Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, AH là đường cao. Tính BC, AH
Bài 4. Cho tam giác ABC (AB<AC), tia phân giác của góc A cắt cạnh BC tại D. Từ B kẻ BE vuông AD (E thuộc AD) , từ C kẻ CF vuông AD (F thuộc AD). Chứng minh :
a) tam giác ABE đồng dạng tam giác ACF
b) AB.AF = AC.AE
c) BE phần CF = DE phần DF
Bài 5. Cho tam giác ABC vuông tại A, lấy điểm D bất kì thuộc cạnh BC. Từ D kẻ đường thẳng vuông góc với AB tại E, vuông góc AC tại F
a) Chứng minh tam giác BED đồng dạng tam giác BAC
b) Chứng minh DB phần DC = FA phần FC
c) Trên tia đối của tia ED lấy điểm K sao cho EK=ED. Gọi H là giao điểm của KC và EF. Chứng minh tam giác HKE đồng dạng tam giác HCF
d) chứng minh DH//BK
Cho tam giác ABC vuông tại A, AB > AC. M thuộc BC, qua M kẻ Mx vuông góc vs BC cắt AB tại I và cắt CA tại D
a) CM : tam giác ABC đồng dạng vs tam giác MDC
b) CM : BI.BA = BM.BC
c) Gọi K là giao của CI và BD. CM : BI.BA + CI.CK = BC2
d) Cho góc ACB = 60o và SCDB = 60cm2 . Tính SCMA ?
Xin giúp em câu toán hình này với ạ.
Cho tam giác ABC vuông tại A ( AB<AC ) , đường cao AH .
A ) C/M : Tam giác AHB đồng dạng với tam giác CAB và AB^2 = BH . BC
B) Kẻ HS vuông góc với AC , HT vuông góc với AB . Chứng minh AT.AB = AS.AC và BT/AB + CS/AC = 1
C) Trên tia HC lấy điểm E sao cho HE = HA , Từ E kẻ đường thẳng vuông góc với BC cắt AC tại M , từ C kẻ đường thẳng d vuông góc với BC cắt tia phân giác góc CEM tại F . Chứng minh 3 điểm H, M , F thẳng hàng.
Em xin cảm ơn.
Cho tam giác nhọn ABC , các đường cao AD, BE, CF , gọi H là trực tâm; gọi M và N lần lượt là trung điểm của AC, BC . Đường thẳng qua M vuông góc với AC và đường thẳng qua N vuông góc với BC cắt nhau tại O
a. CM: tam giác DBA đồng dạng với tam giác FBC; tam giác ABC đồng dạng với tam giác DBF.
b. CM: AH = 2ON
c. khi AH = OA . Tính góc BAC.
. Bài 1 : Cho tam giác ABC vuông tại A có AB = 18cm , AC=24cm . Gọi M là trung điểm của BC . Đường thẳng qua M vuông góc với BC cắt AC tại H và cắt AB tại E
a) Chứng minh tam giác ABC đồng dạng tam giác MBE
b) Tính độ dài BC , EB , EM
c) Chứng minh \(\dfrac{HM}{HA}\) = \(\dfrac{HC}{HE}\)
d) Chứng minh 2MC2 = AC . HC
Cho tam giác ABC có 3 góc nhọn (AB<AC),các đường cao BE và CF cắt nhau tại H.
a/chứng minh: tam giác ABE đồng dạng tam giác ACF.
b/chứng minh:HB.HE=HC.HF
c/chứng minh:tam giác AEF đồng dạng tam giác ABC.
d/Gọi D là giao điểm của AH và BC.CHỨNG MINH DB.DC=DA.DH
cho tam giác ABC vuông tại A ( AB<AC). Đường cao AH. Gọi D là điểm đối xứng của A Qua H. Đường thẳng kẻ qua D song song vwois AB cắt BC và AC lần lượt là M và N
a) tứu gics ABDM là hình gì? Vì sao?
b) Chứng minh: M là trực tâm của tam giác ABC
c) Gọi I là trung điểm của MC. Chứng minh góc HNI là góc vuông
cho tam giác abc phân giác ad góc a (d thuộc bc) trên nữa mặt phẳng bờ bc ko chứa điểm a . kẻ tia bx sao cho góc cbx= góc bad.Gọi i là giao điểm của tia cx với ad kéo dài
a, tam giác adc và tam giác bdi có đồng dạng với nhau ko ? vì sao;
b,cmr ab. ac= ad.ai