Cho tam giác ABC và điểm M nằm trong tam giác. AM, BM, CM lần lượt cắt BC,AC,AB tại I,J,K. Đường thẳng qua M và song song với BC cắt IK, IJ lần lượt ở E, F. CMR: ME = MF
HELP ME!!
1, Tam giác ABC trung tuyến ABC. Gọi G là trọng tâm của tam giác ABC. Đt D qua G cắt các cạnh AB, AC lần lượt tại M và N . Chứng minh:
a, \(\dfrac{AB}{AM}=\dfrac{AC}{AN}=3\)
b, \(\dfrac{BM}{AM}=\dfrac{CN}{AN}=1\)
HELP ME
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
Cho tam giác ABC, H là trực tâm. Gọi M, N, P lần lượt là trung điểm AB, BC, CA. D, E, F lần lượt là trung điểm HA, HB, HC.
a, CM MNFD, MEFP là hình chữ nhật.
b, Tìm điều kiện để MD=ME=DP.
Bài 1: Cho tam giác ABC (góc A= 90o),M là điểm chuyển động trên BC. Vẽ MD vuông góc AB, ME vuông góc AC(D thuộc AB,E thuộc AC). Xácđịnh vị trí của M đễ đoạn thẳng DE có độ dài nhỏ nhất.
Bài 2:Cho tam giác ABC, từ A dựng đường thẳng d cắt cạnh AB. Xác định vị trí của d sao cho tổng khoảng cách từ B và C đến d nhỏ nhất, lớn nhất.
Bài 3: Cho hình vuông ABCD có cạnh a. Trên hai cạnh AB, AD lần lượt lấy hai điểm là M và N sao cho chu vi tam giác AMN là 2a. Tìm vị trí của M và N sao cho SAMN lớn nhất.
Bài 4:Cho tam giác ABC có các cạnh a,b,c. M là điểm nằm trong tam giác. Gọi khoảng cách từ M đến cáccạnh BC,AC,AB lần lượt là x,y,z. Xác định vị trí của điểm M để tổng \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\) đạt giá trị nhỏ nhất.
Bài 5: Cho tam giác ABC nhọn. M là điểm nằm trong tam giác. Xác định vị trí của M để MA.BC+MB.AB đạt giá trị nhỏ nhất.
Bài 6: Cho tam giác ABC , M là điểm chuyển động trên cạnh BC, N là điểm trên đoạn thẳng AM sao cho \(\dfrac{AN}{AM}=\dfrac{1}{k}\) (k>1, k cho trước). Qua N kẻ đường thẳng song song với AB cắt AC tại E. Xác định vị trí của điểm M để SADE đạt GTLN.
Cho tam giác ABC vuông ở A . Vẽ đường cao AH . Trung tuyến AM . Kẻ đường phân giác góc A cắt đường trung trực cạnh BC tại D . Từ D kẻ DE vuông góc với AB tại D , DF vuông góc với AC tại F
a) CM : AD là phân giác góc HAM
b) CM : 3 điểm E , M , F thẳng hàng
c) CM : Tam giác BDC vuông cân
Cho tam giác ABC . Trên cạnh AB lấy điểm M , trên cạnh AC lấy điểm N sao cho \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\); đường trung tuyến AI (I thuộc BC ) cắt đoạn thẳng MN tại K
Chứng minh rằng KM =KN
cho tam giác ABC ,và trung tuyến AM .Phân giác ME của góc AMB cắt AB tại E phân giác MF của góc AMC cắt AC tại F
a, chứng minh EF//BC
b, gọi K là giao điểm của EF và AM,chứng minh I thuộc đường thẳng AM
a. Trên cạnh AB và AC của tam giác ABC lần lượt lấy 2 điểm M và N. Chứng minh \(\dfrac{S_{\Delta AMN}}{S_{\Delta ABC}}=\dfrac{AM.AN}{AB.AC}\).
b. Cho hình bình hành ABCD. Trên các cạnh BC, CD lần lượt lấy các điểm M, N sao cho \(\dfrac{BM}{CM}=\dfrac{CN}{2DN}=k\).
Gọi P, Q lần lượt là giao điểm của BD và AM, AN. Chứng minh \(S_{MPQN}=S_{APQ}\)