Cho tam giác ABC vuông cân tại A, BC = 2cm. Ở phía ngoài tam giác ABC vẽ tam giác ACE vuông cân tại E
a) Chứng minh rằng AECB là hình thang vuông
b) Tính các góc và các cạnh của hình thang AECB
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC, cắt các cạnh AB và AC ở D và E
a) Tìm các hình thang trong hình vẽ
b) Chứng minh rằng hình thang BDEC có một cạnh đáy bằng tổng hai cạnh bên
Ai chỉ mình làm bài với
Cho tam giác ABC và điểm E thuộc cạnh AB.Qua E kẻ đường thẳng song song BC cắt AC tại F.
a)Chứng minh tứ giác BEFC là hình thang.
b) Trên tia đối cuả tia AB lấy điểm H sao cho AH=AE,trên tia đối của tia AC lấy điểm K sao cho AK=AF
Chứng minh tứ giác BCHK là hình thang
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).1)Chứng minh tam giác ADH bằng tam giác BCK. 2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.3)Giảsử2ABCDBK+=.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).
1)Chứng minh tam giác ADH bằng tam giác BCK.
2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3)Giảsử BK=(AB+CD)/2.Tính góc tạo bởi hai đường chéo của hình thang.
Cho tam giác ABC vuông cân tại A, D thuộc AB, E thuộc AC sao cho AD=AE. Qua D vẽ đoạn thẳng vuông góc BE cắt BC tại K. Qua A vẽ đoạn thẳng vuông góc BE cắt BC tại H. Gọi M là giao điểm của DK và AC. CMR:
a) tam giác BAE = tam giác CAD (cái này mình biết làm rồi)
b) tam giác MDC cân
c) HK = HC
Cho tam giác ABC có H là trung điểm của cạnh BC, I là trung điểm của cạnh AH, BI cắt AC tại E. Kẻ HF // BE (F thuộc AC). CM:
a. AE = ÈF = FC
b. IE = 1/4 BE
pls mình đang cần gấp :((((
Cho tam giác ABC cân tại A, AH là đường trung tuyến. Gọi O là trung điểm của cạnh AC a. Chứng minh tứ giác ABOH là hình tháng b. K là điểm đối xứng với H qua O. Chứng minh tứ giác AHCK là hình chữ nhật.
Bài 4 (3,0 điểm) Cho ∆ABC cân tại A. Gọi M và N lần lượt là trung điểm của cạnh AB và cạnh AC.
1) Chứng minh BC = 2MN.
2) Chứng minh tứ giác MNCB là hình thang cân.
3) Gọi I, K lần lượt là trung điểm của MN và BC. O là giao điểm của MC và NB. Chứng minh: A, I, O, K thẳng hàng.