Cho góc xAy = 60 độ, đường tròn (O) tiếp xúc với tia Ax tại B, tiếp xúc với tia Ay tại C. Trên cung nhỏ BC của đường tròn (O) lấy điểm M, gọi D, E, F lần lượt là hình chiếu của điểm M trên BC, CA, AB. a. Chứng minh CDME là tứ giác nội tiếp b. Tính số đo góc EDF c. Chứng minh rằng MD^2= ME*MF
Cho đường tròn tâm O bán kính 2 cm từ điểm A bên ngoài đường tròn , vẽ 2 tiếp điểm AB và AC vuông góc với nhau (B;C là tiếp điểm ) . lấy điểm M thuộc cung BC . vẽ tiếp tuyến của đường tròn M tại 2 tiếp tuyến lần lượt ở D và E
a) tứ giác ABOC là hình gì
b) tình chu vi tam giác ADE
c) tính góc DOE
cho tam giác đều ABC nội tiếp đường tròn (O;R) đường thẳng vuông góc với AC cắt (O) tại D cắt tiếp tuyến qua C của đường tròn O tại E. Gọi M là trung điểm của CE và F là giao điểm của AC và BD a) CM:AM là tiếp tuyến đường tròn(O) b) tứ giác AMCB là hình gì? Vì sao? c) CM: C,O,D thẳng hàng d) CM: BD//EF e) CM: B,D,C,F thuộc 1 đường tròn
Cho đường tròn (O;R) và một điểm A sao cho OA = R √ 2. Vẽ các tiếp tuyến AB, ACvoiws đường tròn. Một góc xOy= 45 độ cắt đoạn thẳng AB và AC lần lượt tại D và E, DE là tiếp tuyến của đường tròn (O). Chứng minh 2/3 R<DE<R. Giúp mình với.
cho tam giác đều nội tiếp đường tròn (o;r). đường thẳng vuông góc với ac tại a cắt (o) tại d, cắt tiếp tuyến của đường tròn (o) tại e . gọi m là trung điểm của ce và f của ac và bd .a) chứng minh :am là tiếp tuyến của đường tròn (o) b) tứ giác amcb là hình gì? vì sao? c) chứng minh: bc//ef e) chứng minh: c,d,e,f cùng thuộc một đường tròn f) tính cf,de theo r
cho đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với các cạnh AB,AC,BC lần lượt tại H,Q,K. Từ H vẽ đường thẳng song song với cạnh BC cắt AK tại M. Trên tia đối của tia MH lấy điểm F sao cho M là trung điểm của HF. Chứng minh K,F,Q thẳng hàng
Cho 2 đường tròn (O) và(O') ở ngoài nhau. Kẻ tiếp tuyến chung ngoài AB và tiếp tuyến chung trong EF (A,E thuộc(O); B,F thuộc(O'). Gọi M là giao điểm của AB và EF
a) Chứng minh: tam giác AOM đồng dạng tam giác BMO'
b) Chứng minh: AE vuông góc BF
c) Gọi N là giao điểm của AE và BF. Chứng minh: O, N, O' thẳng hàng
Cho đường tròn tâm O, điểm M cố định nằm ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) ( A,B là tiếp điểm ). Trên cung nhỏ AB lấy điểm N và từ N kẻ tiếp tuyến với (O) cắt MA,MB lần lượt tại E và F
1) Chứng minh tứ giác AONE nội tiếp
2) Chứng minh chu vi tam giác MEF và độ lớn góc EOF không phụ thuộc vị trí điểm N
3) Gọi I,K lần lượt là giao điểm của OE và OF với AB. Cho \(\widehat{AOB}\) = 120 độ , tính tỉ số \(\frac{EF}{IK}\)
4) Đường thẳng qua O vuông góc với OM cắt MA,MB lần lượt tại C và D. Tìm vị trí điểm N để ( EC+FD ) có độ dài nhỏ nhất
cho tam giác abc có 3 góc nhọn, vẽ đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. BE và CD cắt nhau tại H
a)Chứng minh IO vuông góc DE
b)AH kéo dài cắt BC ở F. CMR: H là tâm đường tròn nội tiếp ΔDFE