Cho tam giác vuông ABC, \(\widehat{A}\) = 90độ. Chứng minh rằng \(\widehat{C}\) = 30độ khi và chỉ khi AB=\(\dfrac{1}{2}\)BC.
Cho tam giác ABC có AB<AC. Gọi M là trung điểm của BC, CHỨNG MINH GÓC MAB>GÓC MAC. Từ đó suy ra p/giác của cóc BAC cắt cạnh BC tại 1 điểm nằm giữa B và M
Cho tam giác ABC vuông tại A BM là phân giác của góc B từ M kẻ ME với BC, ME cắt BA tại K
a) CHo AB=3cm; BC=5cm. Tính AC?
b)Chứng minh tam giác ABM= tam giác EBM
c) Chứng minh tam giác AKC cân?
d) Góc ABC bằng 2 lần góc MKC
Cho tam giác ABC, vuông ở A , có góc B = 30 độ , vẽ tia phân giác CD , D thuộc AB , trên tia BC lấy điểm M sao CA =CM
a) Cm : Góc DBC = gócACD
b) CM : DA =DM
c) Qua B kẻ BM vuông góc với đường thẳng CD , BH vuông BC . CM BH = BM
1. Cho △ABC có AB là cạnh lớn nhất, BC là cạnh nhỏ nhất. Chứng minh rằng \(\widehat{C}>60^o\), \(\widehat{A}\le60^o\).
2. Cho tam giác ABC có M là trung điểm BC.
a) Giả sử AB < AC. Chứng minh \(\widehat{MAC}< \widehat{BAM}\)
b) Giả sử \(\widehat{MAC}< \widehat{BAM}\). Chứng minh AB < AC.
c) Gọi N là trung điểm AC, AM cắt BN tại G. Giả sử AM ⊥ BN. Chứng minh 2AC > BC.
3.
a) Cho △ABC cân tại A, D là điểm bất kì trong △ABC sao cho \(\widehat{ADB}< \widehat{ADC}\). Chứng minh BD > DC
b) Cho △ABC vuông tại A. Chứng minh rằng \(AB^{2017}+AC^{2017}< BC^{2017}\)
Cho tam giác ABC cân tại A. Trên cạnh BC lần lượt lấy các điểm M, N sao cho BM=MN=MC
C/M: góc BAM= góc MAN
Cho tam giác ABC, AB<AC. Gọi M là trung điểm của cạnh BC.
a) Chứng minh \(\widehat{MAB}\) > \(\widehat{MAC}\), từ đó suy ra tia phân giác của góc BAC cắt cạnh BC tại một điểm nằm giữa B và M.
b) Từ M vẽ tia Mx sao cho MA là tia phân giác của góc BMx. Gọi D là giao điểm của Mx với AC. Chứng minh: MB>MD.
Cho tam tam giác ABC , M là trung điểm BC , D thuộc AM . Chứng minh BD < CD và BM < CD
Bài 3: Trên cạnh đáy BC của tam giác cân ABC lấy điểm D và E sao cho BD = DE = EC. Chứng minh rằng ∠BAD=∠EAC < ∠ DAE