Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho tam giác ABC có \(\widehat A = {100^0}\)  và trực tâm H. Tìm góc BHC.

Kiều Sơn Tùng
19 tháng 9 2023 lúc 15:49

Gọi E là chân đường cao từ C xuống AB, D là chân đường cao từ B xuống AC

=> HC ⊥ BE, HB ⊥ CD

Ta có: Vì \(\widehat {BAC}\) và \(\widehat {BAD}\) là 2 góc kề bù nên

\(\begin{array}{l}\widehat {BAC} + \widehat {BAD} = {180^0}\\ \Rightarrow {100^0} + \widehat {BAD} = {180^0}\\ \Rightarrow \widehat {BAD} = {180^0} - {100^0}\\ \Rightarrow \widehat {BAD} = {80^0}\end{array}\)

∆ ADB là tam giác vuông tại D:

\(\begin{array}{l}\widehat {BAD} + \widehat {ABD} = {90^0}\\ \Rightarrow {80^0} + \widehat {ABD} = {90^0}\\ \Rightarrow \widehat {ABD} = {10^0}\end{array}\)

∆ BEH là tam giác vuông tại E

\(\begin{array}{l}\widehat {EBH} + \widehat {BHE} = {90^0}\\ \Rightarrow {10^0} + \widehat {BHE} = {90^0}\\ \Rightarrow \widehat {BHE} = {80^0}\end{array}\)

Hay \(\widehat {BHC} = {80^0}\) 


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết