Con số diện tích lớn quá
\(\overrightarrow{CB}=\left(3;-4\right)\Rightarrow BC=\sqrt{3^2+\left(-4\right)^2}=5\)
\(S=\dfrac{1}{2}d\left(A;BC\right).BC=45\Rightarrow d\left(A;BC\right)=18\)
Theo tính chất trọng tâm, \(d\left(G;BC\right)=\dfrac{2}{3}d\left(A;BC\right)=12\)
Phương trình BC: \(4\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow4x+3y-11=0\)
Do G thuộc \(x-3y+1=0\Rightarrow\) tọa độ G có dạng: \(G\left(3g-1;g\right)\)
\(d\left(G;BC\right)=12\Rightarrow\dfrac{\left|4\left(3g-1\right)+3g-11\right|}{\sqrt{4^2+3^2}}=12\)
\(\Rightarrow\left|g-1\right|=4\Rightarrow\left[{}\begin{matrix}g=5\\g=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}G\left(14;5\right)\\G\left(-10;-3\right)\end{matrix}\right.\)
Áp dụng công thức trọng tâm \(\Rightarrow\left[{}\begin{matrix}A\left(41;9\right)\\A\left(-31;-15\right)\end{matrix}\right.\)