Bài 1: Quan hệ giữa góc và cạnh đối diện trong một tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Duc
cho tam giác abc có góc A:B:C=6:2:1 a, tính số đo các góc A B C b, kẻ AD vuông góc với BC(D thuộc BC) cmr AD bé hơn BD bé hơn CD
Nguyễn Lê Phước Thịnh
26 tháng 2 2021 lúc 21:52

a) Xét ΔABC có

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)

Ta có: \(\widehat{A}:\widehat{B}:\widehat{C}=6:2:1\)

nên \(\dfrac{\widehat{A}}{6}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}\)

mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(cmt)

nên \(\dfrac{\widehat{A}}{6}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{6+2+1}=\dfrac{180^0}{9}=20^0\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{\widehat{A}}{6}=20^0\\\dfrac{\widehat{B}}{2}=20^0\\\dfrac{\widehat{C}}{1}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=120^0\\\widehat{B}=40^0\\\widehat{C}=20^0\end{matrix}\right.\)

Vậy: \(\widehat{A}=120^0\)\(\widehat{B}=40^0\)\(\widehat{C}=20^0\)