Cho tam giác ABC có góc A nhỏ hơn 900 . Vẽ ra phía ngoài tam giác ABC các tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC ⊥ NB
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.
mik cần gấp
Cho tam giác ABC có góc A nhỏ hơn 90 °. Vẽ ra phía ngoài tam giác ABC các tam giác vuông cân đỉnh A là MAB, NAC
a) CM : MC = NB
b) CM : MC vuông NB
c) Giả sử tam giác ABC đều cạnh 4cm. Tính MB, NC và chứng minh MN // BC
Cho tam giác ABC có B=60 ; AB=7cm: BC= 15 cm. Vẽ AH vuông góc BC (H thuộc BC ).Lấy điểm M trên HC sao HM= HB. a) So sánh BAC và ACB b) Chứng minh tam giác ABM đều. c)Tam giác ABC có phải là tam giác vuông không? Vì sao?
cho tam giác abc cân tại a tia pg am m thuộc bc sao cho mb=mc từ m kẻ md vuông góc với ab me vuông với ac CM tam giác abm = tam giác acm am vuông góc với bc ad =ae góc amd = góc ame
Cho tam giác ABC vuông cân tại A, M là trung điểm của cạnh BC,E là điểm nằm giữa M và C. Vẽ BH vuông góc với AE tại H, CK vuông góc với AE tại K. CMR: a. BH = AK
b. tam giác HBM = tam giác KAM
c. tam giác MHK vuông cân
cho tam giác ABC cân tại A (góc A < 90 độ). Vẽ AH vuông góc với BC tại H
a). Chứng minh: tam giác ABH = tam iacs ACH rồi suy ra AH là tia phân giác góc A
b). Từ H vẽ AH vuông góc với AB tại E, HF vuông góc với AC tại F. Chứng minh tam giác EAH = tam giác FAH rồi suy ra tam giác HEF là tam giác cân
c). Đường thẳng vuông góc với AC tại C cắt tia AH cắt K. Chứng minh: EH // BK
d). Qua A, vẽ đường thẳng song song với BC cắt tia HF tại N. Trên tia HE lấy điểm N sao cho HM = HN. Chứng minh: M, A, N thẳng hàng
1. Cho tam giác ABC vuông tại A có AC=1cm, BC=2cm. Kẻ đường trung tuyến BK và đường cao AH
a) Tính AB
b) Tính BK và AH
2. Cho tam giác ABC vuông cân tại A (ˆBAC=90BAC^=90 độ, BD=BA). Ở phía ngoài tam giác ABC, dựng tam giác DAB vuông cân tại D (ˆDAB=90DAB^=90 độ, BD=BA). Gọi E là một điểm tùy ý trên DA. Đường thẳng đi qua E và vuông góc với BE cắt AC ở F
a) Gọi K là giao điểm của BD và AC. CMR tam giác KAB vuông cân tại A và DA là đường trung trực của đoạn KB
b) CMR tam giác KEA= tam giác BEA
c) CMR tam giác KEF cân tại E. Từ đó suy ra BE= EF