Cho tam giác AbC có góc A=90 độ. M là trung điểm của BC. Vẽ MN vuông góc với AB tại N. Chứng minh: N là trung điểm của AB
Gấp ạ!
Cho tam giác ABC vuông tại A có AB = 12cm, BC = 13cm. Gọi M, N là trung điểm của AB, BC.
a) Chứng minh: MN vuông góc với AB;
b) Tính độ dài MN.
c) Gọi P là trung điểm của AC. Tính độ dài cạnh MP, NP.
Cho Tam giác ABC vuông tại A, có M là trung điểm AB.Đường thẳng vuông góc với AB tại N cắt BC tại N. A) chứng minh N là trung điểm BC B) Chứng mình BC=2AN
1,cho tam giác ABC có BM=MA ,BN=NC.biết MN=25cm.Tính AC
2, cho tam giác ABC có M là trung điểm của AC.Qua M kẻ đường thẳng song song với BC cắt AB tại N.Chứng minh góc ANM=góc ABC và N là trung điểm của AB
GIÚP MÌNH VỚI Ạ MÌNH CẢM ƠN NHIỀU
Bài 1: Cho tam giác ABC vuông cân tại C. Trên AC, CB lấy lần lượt điểm D,E sao cho CD=CE. Từ D,C hạ vuông góc với AE. Các đường vuông góc này cắt AB thứ tự là K,L. C/m: KL=KB.
Bài 2: Cho tứ giác ABCD,M và N lần lượt là trung điểm của AB và CD, biết: AD cắt MN tại E, BC cắt MN tại F. Với điều kiện nào của tứ giác thì ABCD có: góc AEM=FEM
Bài 3: Cho tam giác ABC có 3 góc nhọn, các đường cao CH, BK. Gọi D Và E lần lượt là hình chiếu của B và C trên đường thẳng HK. C/m: DK=EH.
Cho ∆ABC, AH là đường cao. Qua trung điểm I của BH và trung điểm K của CH dựng các đường thẳng vuông góc với BC, lần lượt cắt AB, AC tại D và E. Chứng minh a) ID // KE và ID = KE b) DE // IK và DE = IK
Cho tam giác ABC cân tại A, trung tuyến AD. Kẻ DH vuông góc với AC tại
H.Gọi M,I lần lượt là trung điểm của HC,HD.
1.Chứng minh: MI // BC, DM // AH
2.Chứng minh: MI vuông góc với AD.
3.Chứng minh: AI vuông góc với BC.
Bài 4: Cho tam giác ABC. Vẽ đường cao AH. Gọi D, E theo thứ tự là trung điểm của các cạnh AB và AC. Vẽ DI và EK cùng vuông góc với BC. Chứng minh rằng :DI = EK. Gợi ý : - Học sinh tự vẽ hình minh họa. - dựa vào đường trung bình chứng minh DI = 1/2 AH và EK = 1/2AH.
Bài 4:Cho hình thang ABCD có góc A= góc D= 90 độ, AB= AD= 2cm; DC= 4cm và BH vuông góc CD tại H
a)Chứng minh rằng: tam giác ABD= tam giác HDB
b)Chứng minh rằng: tam giác BHC vuông cân tại H